Blind Quality Assessment for in-the-Wild Images via Hierarchical Feature Fusion and Iterative Mixed Database Training

计算机科学 特征(语言学) 失真(音乐) 图像质量 人工智能 代表(政治) 领域(数学) 质量(理念) 情报检索 图像(数学) 机器学习 数据库 计算机视觉 模式识别(心理学) 数学 政治 认识论 语言学 哲学 放大器 法学 纯数学 带宽(计算) 计算机网络 政治学
作者
Wei Sun,Xiongkuo Min,Danyang Tu,Siwei Ma,Guangtao Zhai
出处
期刊:IEEE Journal of Selected Topics in Signal Processing [Institute of Electrical and Electronics Engineers]
卷期号:17 (6): 1178-1192 被引量:133
标识
DOI:10.1109/jstsp.2023.3270621
摘要

Image quality assessment (IQA) is very important for both end-users and service providers since a high-quality image can significantly improve the user's quality of experience (QoE) and also benefit lots of computer vision algorithms. Most existing blind image quality assessment (BIQA) models were developed for synthetically distorted images, however, they perform poorly on in-the-wild images, which are widely existed in various practical applications. In this article, we propose a novel BIQA model for in-the-wild images by addressing two critical problems in this field: how to learn better quality-aware feature representation , and how to solve the problem of insufficient training samples in terms of their content and distortion diversity . Considering that perceptual visual quality is affected by both low-level visual features (e.g. distortions) and high-level semantic information (e.g. content), we first propose a staircase structure to hierarchically integrate the features from intermediate layers into the final feature representation, which enables the model to make full use of visual information from low-level to high-level. Then an iterative mixed database training (IMDT) strategy is proposed to train the BIQA model on multiple databases simultaneously, so the model can benefit from the increase in both training samples and image content and distortion diversity and can learn a more general feature representation. Experimental results show that the proposed model outperforms other state-of-the-art BIQA models on six in-the-wild IQA databases by a large margin. Moreover, the proposed model shows an excellent performance in the cross-database evaluation experiments, which further demonstrates that the learned feature representation is robust to images with diverse distortions and content.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
刚刚
刚刚
1秒前
全麦面包完成签到,获得积分10
1秒前
James发布了新的文献求助10
1秒前
所所应助茉莉采纳,获得10
2秒前
小马甲应助何必在乎采纳,获得10
2秒前
lzl发布了新的文献求助10
2秒前
充电宝应助yzx2采纳,获得10
3秒前
直率的鸿完成签到,获得积分10
3秒前
3秒前
充电宝应助爱听歌笑寒采纳,获得10
3秒前
3秒前
4秒前
领导范儿应助MengpoZhao采纳,获得10
4秒前
福卡完成签到 ,获得积分10
4秒前
无心的怜南关注了科研通微信公众号
4秒前
4秒前
蘑菇发布了新的文献求助10
5秒前
苯基乙胺发布了新的文献求助30
5秒前
5秒前
phl发布了新的文献求助10
6秒前
姚钱树完成签到,获得积分10
6秒前
叮咚应助你滴臭宝采纳,获得10
6秒前
FashionBoy应助吕小n采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
DDDD发布了新的文献求助10
7秒前
7秒前
RESLR完成签到,获得积分10
7秒前
sherry123发布了新的文献求助10
8秒前
8秒前
在这完成签到,获得积分10
8秒前
xuxu发布了新的文献求助50
8秒前
8秒前
8秒前
合适的楷瑞完成签到,获得积分10
9秒前
9秒前
yyy应助like采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719773
求助须知:如何正确求助?哪些是违规求助? 5257547
关于积分的说明 15289528
捐赠科研通 4869516
什么是DOI,文献DOI怎么找? 2614832
邀请新用户注册赠送积分活动 1564816
关于科研通互助平台的介绍 1522006