亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Reinforcement Learning for Real-Time Assembly Planning in Robot-Based Prefabricated Construction

强化学习 机器人 工程类 夹持器 人工智能 运动规划 计算机科学 控制工程 模拟 人机交互 机械工程
作者
Aiyu Zhu,Tianhong Dai,Gangyan Xu,Pieter Pauwels,Bauke de Vries,Meng Fang
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:20 (3): 1515-1526 被引量:22
标识
DOI:10.1109/tase.2023.3236805
摘要

The adoption of robotics is promising to improve the efficiency, quality, and safety of prefabricated construction. Besides technologies that improve the capability of a single robot, the automated assembly planning for robots at construction sites is vital for further improving the efficiency and promoting robots into practices. However, considering the highly dynamic and uncertain nature of a construction environment, and the varied scenarios in different construction sites, it is always challenging to make appropriate and up-to-date assembly plans. Therefore, this paper proposes a Deep Reinforcement Learning (DRL) based method for automated assembly planning in robot-based prefabricated construction. Specifically, a re-configurable simulator for assembly planning is developed based on a Building Information Model (BIM) and an open game engine, which could support the training and testing of various optimization methods. Furthermore, the assembly planning problem is modelled as a Markov Decision Process (MDP) and a set of DRL algorithms are developed and trained using the simulator. Finally, experimental case studies in four typical scenarios are conducted, and the performance of our proposed methods have been verified, which can also serve as benchmarks for future research works within the community of automated construction. Note to Practitioners— This paper is conducted based on the comprehensive analysis of real-life assembly planning processes in prefabricated construction, and the methods proposed could bring many benefits to practitioners. Firstly, the proposed simulator could be easily re-configured to simulate diverse scenarios, which can be used to evaluate and verify the operations' optimization methods and new construction technologies. Secondly, the proposed DRL-based optimization methods can be directly adopted in various robot-based construction scenarios, and can also be tailored to support the assembly planning in traditional human-based or human-robot construction environments. Thirdly, the proposed DRL methods and their performance in the four typical scenarios can serve as benchmarks for proposing new advanced construction technologies and optimization methods in assembly planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
feiyan发布了新的文献求助10
1秒前
鉴定为学计算学的完成签到,获得积分10
4秒前
5秒前
6秒前
肉丝发布了新的文献求助10
9秒前
lcy发布了新的文献求助10
11秒前
大青山完成签到 ,获得积分10
12秒前
Diamond完成签到 ,获得积分10
13秒前
14秒前
AAA电材哥发布了新的文献求助10
15秒前
15秒前
李李原上草完成签到 ,获得积分10
16秒前
富婆莱莱发布了新的文献求助10
20秒前
胡萝卜鸡完成签到,获得积分20
27秒前
万能图书馆应助Jessica采纳,获得10
27秒前
29秒前
兴奋智宸发布了新的文献求助10
31秒前
胡萝卜鸡发布了新的文献求助50
36秒前
研友_5Y9Z75完成签到 ,获得积分0
36秒前
45秒前
oo完成签到 ,获得积分10
48秒前
48秒前
兴奋智宸完成签到,获得积分10
49秒前
Wing完成签到 ,获得积分10
51秒前
linnya发布了新的文献求助10
53秒前
56秒前
852应助linnya采纳,获得10
59秒前
可爱的函函应助lcy采纳,获得10
59秒前
丽丽发布了新的文献求助10
1分钟前
王婧萱萱萱完成签到 ,获得积分10
1分钟前
搜集达人应助江洋大盗采纳,获得10
1分钟前
1分钟前
李健应助shinn采纳,获得10
1分钟前
北冥有鱼完成签到,获得积分10
1分钟前
顾矜应助叫我魔王大人采纳,获得10
1分钟前
1分钟前
彭于晏应助科研通管家采纳,获得10
1分钟前
今后应助科研通管家采纳,获得10
1分钟前
1分钟前
完美世界应助科研通管家采纳,获得10
1分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4161589
求助须知:如何正确求助?哪些是违规求助? 3697204
关于积分的说明 11674683
捐赠科研通 3388392
什么是DOI,文献DOI怎么找? 1858052
邀请新用户注册赠送积分活动 918823
科研通“疑难数据库(出版商)”最低求助积分说明 831695