亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Interpretable machine learning models for predicting in-hospital death in patients in the intensive care unit with cerebral infarction

重症监护室 格拉斯哥昏迷指数 可解释性 重症监护 医学 重症监护医学 接收机工作特性 临床判断 急诊医学 试验装置 机器学习 预测建模 人工智能 计算机科学 内科学 外科
作者
Yang Ouyang,Meng Cheng,Bingqing He,Fengjuan Zhang,Wen Ouyang,Jianwu Zhao,Yang Qu
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:231: 107431-107431 被引量:10
标识
DOI:10.1016/j.cmpb.2023.107431
摘要

Research on patients with cerebral infarction in the Intensive Care Unit (ICU) is still lacking. Our study aims to develop and validate multiple machine-learning (ML) models using two large ICU databases-Medical Information Mart for Intensive Care version III (MIMIC-III) and eICU Research Institute Database (eRI)-to guide clinical practice.We collected clinical data from patients with cerebral infarction in the MIMIC-III and eRI databases within 24 h of admission. The opinion of neurologists and the Least Absolute Shrinkage and Selection Operator regression was used to screen for relevant clinical features. Using eRI as the training set and MIMIC-III as the test set, we developed and validated six ML models. Based on the results of the model validation, we select the best model and perform the interpretability analysis on it.A total of 4,338 patients were included in the study (eRI:3002, MIMIC-III:1336), resulting in a total of 18 clinical characteristics through screening. Model validation results showed that random forest (RF) was the best model, with AUC and F1 scores of 0.799 and 0.417 in internal validation and 0.733 and 0.498 in external validation, respectively; moreover, its sensitivity and recall were the highest of the six algorithms for both the internal and external validation. The explanatory analysis of the model showed that the three most important variables in the RF model were Acute Physiology Score-III, Glasgow Coma Scale score, and heart rate, and that the influence of each variable on the judgement of the model was consistent with medical knowledge.Based on a large sample of patients and advanced algorithms, our study bridges the limitations of studies on this area. With our model, physicians can use the admission information of cerebral infarction patients in the ICU to identify high-risk groups among them who are prone to in-hospital death, so that they could be more alert to this group of patients and upgrade medical measures early to minimize the mortality of patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
科研通AI5应助美丽小甜瓜采纳,获得10
8秒前
为你钟情完成签到 ,获得积分10
10秒前
mumumuzzz发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
20秒前
24秒前
lilac发布了新的文献求助30
28秒前
32秒前
kanwenxian完成签到,获得积分10
34秒前
37秒前
41秒前
yanmh完成签到,获得积分10
47秒前
1分钟前
1分钟前
美丽小甜瓜完成签到,获得积分20
1分钟前
1分钟前
1分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
Jacky完成签到 ,获得积分10
2分钟前
2分钟前
整齐的飞兰完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
科目三应助科研通管家采纳,获得10
2分钟前
2分钟前
gszy1975完成签到,获得积分10
3分钟前
Ava应助miku1采纳,获得10
3分钟前
却之不恭6253完成签到,获得积分20
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
4分钟前
lixuebin完成签到 ,获得积分10
4分钟前
4分钟前
鬼见愁应助mumumuzzz采纳,获得10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
5分钟前
5分钟前
零一完成签到 ,获得积分10
5分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 740
2024-2030年中国石英材料行业市场竞争现状及未来趋势研判报告 500
镇江南郊八公洞林区鸟类生态位研究 500
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4143002
求助须知:如何正确求助?哪些是违规求助? 3679170
关于积分的说明 11627763
捐赠科研通 3372600
什么是DOI,文献DOI怎么找? 1852408
邀请新用户注册赠送积分活动 915180
科研通“疑难数据库(出版商)”最低求助积分说明 829680