Interpretable machine learning models for predicting in-hospital death in patients in the intensive care unit with cerebral infarction

重症监护室 格拉斯哥昏迷指数 可解释性 重症监护 医学 重症监护医学 接收机工作特性 临床判断 急诊医学 试验装置 机器学习 预测建模 人工智能 计算机科学 内科学 外科
作者
Yang Ouyang,Meng Cheng,Bingqing He,Fengjuan Zhang,Wen Ouyang,Jianwu Zhao,Yang Qu
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:231: 107431-107431 被引量:10
标识
DOI:10.1016/j.cmpb.2023.107431
摘要

Research on patients with cerebral infarction in the Intensive Care Unit (ICU) is still lacking. Our study aims to develop and validate multiple machine-learning (ML) models using two large ICU databases-Medical Information Mart for Intensive Care version III (MIMIC-III) and eICU Research Institute Database (eRI)-to guide clinical practice.We collected clinical data from patients with cerebral infarction in the MIMIC-III and eRI databases within 24 h of admission. The opinion of neurologists and the Least Absolute Shrinkage and Selection Operator regression was used to screen for relevant clinical features. Using eRI as the training set and MIMIC-III as the test set, we developed and validated six ML models. Based on the results of the model validation, we select the best model and perform the interpretability analysis on it.A total of 4,338 patients were included in the study (eRI:3002, MIMIC-III:1336), resulting in a total of 18 clinical characteristics through screening. Model validation results showed that random forest (RF) was the best model, with AUC and F1 scores of 0.799 and 0.417 in internal validation and 0.733 and 0.498 in external validation, respectively; moreover, its sensitivity and recall were the highest of the six algorithms for both the internal and external validation. The explanatory analysis of the model showed that the three most important variables in the RF model were Acute Physiology Score-III, Glasgow Coma Scale score, and heart rate, and that the influence of each variable on the judgement of the model was consistent with medical knowledge.Based on a large sample of patients and advanced algorithms, our study bridges the limitations of studies on this area. With our model, physicians can use the admission information of cerebral infarction patients in the ICU to identify high-risk groups among them who are prone to in-hospital death, so that they could be more alert to this group of patients and upgrade medical measures early to minimize the mortality of patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助老鼠咕噜采纳,获得10
1秒前
1秒前
大胆的芸遥完成签到,获得积分10
2秒前
郭嘉彬完成签到,获得积分10
2秒前
2秒前
搜集达人应助pyj采纳,获得10
2秒前
么么蛋发布了新的文献求助10
4秒前
无心发布了新的文献求助10
6秒前
郭嘉彬发布了新的文献求助10
6秒前
7秒前
8秒前
动听的小懒虫完成签到,获得积分10
8秒前
10秒前
柠栀发布了新的文献求助10
10秒前
10秒前
11秒前
12秒前
likeit发布了新的文献求助10
12秒前
13秒前
13秒前
14秒前
黄迪迪完成签到,获得积分10
15秒前
Jiaxx完成签到,获得积分10
15秒前
田様应助www采纳,获得10
16秒前
研友_Z1xNWn完成签到,获得积分10
16秒前
苹果南烟发布了新的文献求助10
16秒前
17秒前
17秒前
青柠发布了新的文献求助10
17秒前
小羊摸鱼完成签到 ,获得积分10
17秒前
MaSiYing完成签到,获得积分10
19秒前
核桃发布了新的文献求助10
19秒前
大胆隶发布了新的文献求助10
20秒前
执着从筠发布了新的文献求助10
20秒前
Dloftdv完成签到 ,获得积分10
20秒前
20秒前
21秒前
celeste发布了新的文献求助10
22秒前
22秒前
pyj发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5309595
求助须知:如何正确求助?哪些是违规求助? 4454149
关于积分的说明 13859390
捐赠科研通 4342109
什么是DOI,文献DOI怎么找? 2384337
邀请新用户注册赠送积分活动 1378821
关于科研通互助平台的介绍 1346965