Interpretable machine learning models for predicting in-hospital death in patients in the intensive care unit with cerebral infarction

重症监护室 格拉斯哥昏迷指数 可解释性 重症监护 医学 重症监护医学 接收机工作特性 临床判断 急诊医学 试验装置 机器学习 预测建模 人工智能 计算机科学 内科学 外科
作者
Yang Ouyang,Meng Cheng,Bingqing He,Fengjuan Zhang,Wen Ouyang,Jianwu Zhao,Yang Qu
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:231: 107431-107431 被引量:10
标识
DOI:10.1016/j.cmpb.2023.107431
摘要

Research on patients with cerebral infarction in the Intensive Care Unit (ICU) is still lacking. Our study aims to develop and validate multiple machine-learning (ML) models using two large ICU databases-Medical Information Mart for Intensive Care version III (MIMIC-III) and eICU Research Institute Database (eRI)-to guide clinical practice.We collected clinical data from patients with cerebral infarction in the MIMIC-III and eRI databases within 24 h of admission. The opinion of neurologists and the Least Absolute Shrinkage and Selection Operator regression was used to screen for relevant clinical features. Using eRI as the training set and MIMIC-III as the test set, we developed and validated six ML models. Based on the results of the model validation, we select the best model and perform the interpretability analysis on it.A total of 4,338 patients were included in the study (eRI:3002, MIMIC-III:1336), resulting in a total of 18 clinical characteristics through screening. Model validation results showed that random forest (RF) was the best model, with AUC and F1 scores of 0.799 and 0.417 in internal validation and 0.733 and 0.498 in external validation, respectively; moreover, its sensitivity and recall were the highest of the six algorithms for both the internal and external validation. The explanatory analysis of the model showed that the three most important variables in the RF model were Acute Physiology Score-III, Glasgow Coma Scale score, and heart rate, and that the influence of each variable on the judgement of the model was consistent with medical knowledge.Based on a large sample of patients and advanced algorithms, our study bridges the limitations of studies on this area. With our model, physicians can use the admission information of cerebral infarction patients in the ICU to identify high-risk groups among them who are prone to in-hospital death, so that they could be more alert to this group of patients and upgrade medical measures early to minimize the mortality of patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
青山完成签到 ,获得积分10
刚刚
共享精神应助王闪闪采纳,获得10
1秒前
XLC发布了新的文献求助10
1秒前
中科院饲养员完成签到,获得积分10
2秒前
zhangyu完成签到,获得积分10
3秒前
5秒前
哆啦A梦完成签到,获得积分10
6秒前
集力申完成签到,获得积分10
6秒前
HEIKU应助RiRi采纳,获得10
7秒前
上官若男应助科研通管家采纳,获得10
11秒前
华仔应助科研通管家采纳,获得10
11秒前
SciGPT应助科研通管家采纳,获得10
11秒前
英俊的铭应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
共享精神应助科研通管家采纳,获得10
11秒前
情怀应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得30
11秒前
11秒前
11秒前
11秒前
12秒前
小宋完成签到,获得积分10
13秒前
henryhc_完成签到 ,获得积分10
13秒前
研友_LMpo68完成签到 ,获得积分10
16秒前
科研长颈鹿完成签到,获得积分10
16秒前
珈蓝完成签到,获得积分10
17秒前
18秒前
王闪闪发布了新的文献求助10
19秒前
20秒前
21秒前
22秒前
22秒前
Rosie完成签到,获得积分10
22秒前
和谐的冷亦完成签到,获得积分10
23秒前
25秒前
26秒前
鸣风发布了新的文献求助10
27秒前
御风发布了新的文献求助10
27秒前
科研通AI2S应助彩色凉面采纳,获得10
28秒前
30秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781113
求助须知:如何正确求助?哪些是违规求助? 3326545
关于积分的说明 10227650
捐赠科研通 3041675
什么是DOI,文献DOI怎么找? 1669552
邀请新用户注册赠送积分活动 799100
科研通“疑难数据库(出版商)”最低求助积分说明 758734