Adsorption of uranium (VI) by metal-organic frameworks and covalent-organic frameworks from water

吸附 化学 海水 金属有机骨架 废水 浓缩铀 环境化学 核能 人体净化 工艺工程 废物管理 环境科学 有机化学 环境工程 材料科学 冶金 生态学 工程类 地质学 海洋学 生物
作者
Douchao Mei,Lijia Liu,Bing Yan
出处
期刊:Coordination Chemistry Reviews [Elsevier BV]
卷期号:475: 214917-214917 被引量:183
标识
DOI:10.1016/j.ccr.2022.214917
摘要

As we all know, energy and environment are two everlasting themes for the development of society. Nuclear power source, as a clean energy that is easy to be stored, has been rapidly developed in the past few decades. Because uranium is the main nuclear fuel, mining uranium from seawater is essential. Besides, uranium-containing wastewater discharged by nuclear industry also pose a serious threat for ecological environment. Considering the radioactivity and toxicity of uranium, it is urgent for us to remove U(VI) from wastewater. To achieve these ends, various uranium adsorption materials have been developed. Among them, metal–organic frameworks (MOFs) and covalent organic frameworks (COFs) have aroused wide concern owing to the advantages of high specific surface areas, abundant active adsorption sites and controllable pore structure. However, there is huge room for MOFs and COFs in the application of uranium treatment. Herein, we provide a comprehensive review on MOFs and COFs for the enrichment and removal of U(VI) from seawater and wastewater, including synthetic approach, influencing factors, possible adsorption mechanism, as well as the performance comparison with other materials. In addition, the problem of current research is pointed out and the future direction about MOFs and COFs in uranium treatment is discussed. Noteworthy, a novel recurrent neural network (RNN) model is creatively put forward to connect the adsorption and detection of U(VI). More interestingly, the deep machine learning (ML) algorithm can replace the use of inductively couple plasma optimal emission spectrometry (ICP-OES). The goal of this paper is to provide guidance for the synthesis of novel MOFs and COFs U-adsorbents and broaden their application in the treatment of U(VI).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
hejinyin完成签到,获得积分10
刚刚
PhD_Lee73完成签到 ,获得积分10
1秒前
科研通AI2S应助李y梅子采纳,获得10
2秒前
一阳完成签到,获得积分10
3秒前
3秒前
3秒前
简亓发布了新的文献求助10
3秒前
4秒前
jiang完成签到 ,获得积分10
4秒前
Kate发布了新的文献求助10
7秒前
8秒前
Luos完成签到,获得积分10
8秒前
tian发布了新的文献求助10
9秒前
AirHaicf发布了新的文献求助10
10秒前
11秒前
orixero应助简亓采纳,获得10
11秒前
动漫大师发布了新的文献求助10
12秒前
123完成签到 ,获得积分10
12秒前
yuancw完成签到 ,获得积分10
13秒前
13秒前
SLS完成签到,获得积分10
14秒前
南城完成签到 ,获得积分10
14秒前
willa完成签到 ,获得积分10
14秒前
huihui完成签到,获得积分10
14秒前
holi完成签到 ,获得积分10
15秒前
科研通AI2S应助Kate采纳,获得10
15秒前
专注的电脑完成签到,获得积分10
16秒前
Arrow完成签到,获得积分10
17秒前
zhubin完成签到 ,获得积分10
18秒前
18秒前
孤烟发布了新的文献求助10
18秒前
02完成签到,获得积分10
20秒前
充电宝应助孤烟采纳,获得10
22秒前
珥多发布了新的文献求助10
23秒前
25秒前
25秒前
26秒前
28秒前
ding应助科研通管家采纳,获得10
28秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781113
求助须知:如何正确求助?哪些是违规求助? 3326545
关于积分的说明 10227650
捐赠科研通 3041675
什么是DOI,文献DOI怎么找? 1669552
邀请新用户注册赠送积分活动 799100
科研通“疑难数据库(出版商)”最低求助积分说明 758734