Predicting Postoperative Stroke in Elderly SICU Patients: An Interpretable Machine Learning Model Using MIMIC Data

作者
Tao Li,Shu‐Heng Chen,Junyi Fan,Elham Pishgar,Kamiar Alaei,Greg Placencia,Maryam Pishgar
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2506.03209
摘要

Postoperative stroke remains a critical complication in elderly surgical intensive care unit (SICU) patients, contributing to prolonged hospitalization, elevated healthcare costs, and increased mortality. Accurate early risk stratification is essential to enable timely intervention and improve clinical outcomes. We constructed a combined cohort of 19,085 elderly SICU admissions from the MIMIC-III and MIMIC-IV databases and developed an interpretable machine learning (ML) framework to predict in-hospital stroke using clinical data from the first 24 hours of Intensive Care Unit (ICU) stay. The preprocessing pipeline included removal of high-missingness features, iterative Singular Value Decomposition (SVD) imputation, z-score normalization, one-hot encoding, and class imbalance correction via the Adaptive Synthetic Sampling (ADASYN) algorithm. A two-stage feature selection process-combining Recursive Feature Elimination with Cross-Validation (RFECV) and SHapley Additive exPlanations (SHAP)-reduced the initial 80 variables to 20 clinically informative predictors. Among eight ML models evaluated, CatBoost achieved the best performance with an AUROC of 0.8868 (95% CI: 0.8802--0.8937). SHAP analysis and ablation studies identified prior cerebrovascular disease, serum creatinine, and systolic blood pressure as the most influential risk factors. Our results highlight the potential of interpretable ML approaches to support early detection of postoperative stroke and inform decision-making in perioperative critical care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助张艳鑫采纳,获得10
1秒前
zhaopeipei完成签到,获得积分10
1秒前
科研式发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
gfdfg完成签到,获得积分10
4秒前
5秒前
所所应助hhhh采纳,获得10
6秒前
7秒前
Henagan完成签到 ,获得积分10
8秒前
希望天下0贩的0应助之南采纳,获得10
9秒前
9秒前
隐形曼青应助悦泽瞬亦采纳,获得10
10秒前
twiser完成签到,获得积分20
10秒前
10秒前
自由冰凡发布了新的文献求助10
11秒前
11秒前
985博士完成签到,获得积分20
12秒前
ll完成签到 ,获得积分10
12秒前
零城XL完成签到 ,获得积分10
12秒前
范棒棒发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
14秒前
张艳鑫发布了新的文献求助10
15秒前
16秒前
危机的向日葵完成签到 ,获得积分10
17秒前
今后应助不要停下来啊采纳,获得10
17秒前
锥形瓶应助西北采纳,获得10
17秒前
帕金森完成签到,获得积分10
18秒前
20秒前
20秒前
wancy完成签到 ,获得积分10
22秒前
CipherSage应助静oo采纳,获得10
22秒前
hhhh发布了新的文献求助10
22秒前
22秒前
23秒前
踏实飞薇应助王雪松采纳,获得10
26秒前
NSS发布了新的文献求助10
26秒前
Rookie99完成签到,获得积分10
27秒前
自由冰凡完成签到,获得积分10
27秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5457595
求助须知:如何正确求助?哪些是违规求助? 4563953
关于积分的说明 14292551
捐赠科研通 4488625
什么是DOI,文献DOI怎么找? 2458671
邀请新用户注册赠送积分活动 1448647
关于科研通互助平台的介绍 1424343