Automated Detection System Based on Convolution Neural Networks for Retained Root, Endodontic Treated Teeth, and Implant Recognition on Dental Panoramic Images

卷积神经网络 计算机科学 人工智能 牙科 卷积(计算机科学) 分割 牙种植体 计算机视觉 人工神经网络 模式识别(心理学) 医学 植入 外科
作者
Shih-Lun Chen,Tsung‐Yi Chen,Yi-Cheng Mao,Szu-Yin Lin,Ya-Yun Huang,Chiung-An Chen,Yuan-Jin Lin,Yo-Ming Hsu,Chi-An Li,Wei-Yuan Chiang,Kai-Yi Wong,Patricia Angela R. Abu
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:22 (23): 23293-23306 被引量:2
标识
DOI:10.1109/jsen.2022.3211981
摘要

For a daily dental practice, the Panoramic (PANO) X-ray film is one of the most commonly used dental X-rays. One of its important advantages is the coverage of most anatomic structures and clinical findings in a single film. Important information about clinical treatment and diagnosis can be provided from the expert analysis of the PANO. Combined with the assistance of artificial intelligence, the application has great potential. The purpose of this study was to propose an automated detection system based on several modern convolutional neural networks (CNNs) for the classification of retained roots, endodontic treated teeth, and implants. In order to meet the standards of practical clinical application, the database used in this study is provided by dentists with more than three years of practical experience. The contributions of this work are given as follows: 1) proposed more advanced techniques for image segmentation and image position in dental radiographs; 2) a better image enhancement is proposed, which improves the accuracy of the five CNNs to more than 96%; and 3) combined with the fuzzy operation to achieve more powerful and accurate anomaly detection. The final result has an accuracy rate of up to 98.75%. It is about 20% higher than previous techniques. This research designed to identify and document each specific finding automatically could help dentists obtain an objective treatment evaluation and provide dentists more precious clinical time for dental operations and communication with patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123456678完成签到,获得积分10
刚刚
kk发布了新的文献求助10
2秒前
曲奇葡萄酒完成签到,获得积分10
4秒前
Sledge完成签到,获得积分10
6秒前
小猪坨完成签到,获得积分10
7秒前
盛夏如花发布了新的文献求助10
8秒前
Jasper应助qinqin采纳,获得30
10秒前
赘婿应助kk采纳,获得10
11秒前
ding应助zyq111111采纳,获得10
11秒前
12秒前
13秒前
potato完成签到,获得积分20
13秒前
万能图书馆应助冲冲冲采纳,获得10
13秒前
小二郎应助WangY1263采纳,获得30
14秒前
miao完成签到,获得积分10
15秒前
16秒前
CodeCraft应助波风水门采纳,获得20
16秒前
糊涂的语兰完成签到,获得积分10
16秒前
善良苠完成签到,获得积分10
17秒前
guxue发布了新的文献求助10
17秒前
小水完成签到,获得积分20
17秒前
堪如南发布了新的文献求助20
18秒前
19秒前
potato发布了新的文献求助10
19秒前
帅气的祥完成签到,获得积分10
19秒前
研友_n0gowL发布了新的文献求助10
19秒前
乐乐应助Wen采纳,获得10
21秒前
25秒前
qinqin发布了新的文献求助30
25秒前
堪如南完成签到,获得积分10
25秒前
26秒前
29秒前
29秒前
冲冲冲发布了新的文献求助10
30秒前
zzz发布了新的文献求助30
30秒前
32秒前
32秒前
kk发布了新的文献求助10
33秒前
Wen发布了新的文献求助10
33秒前
长京完成签到 ,获得积分10
35秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781625
求助须知:如何正确求助?哪些是违规求助? 3327197
关于积分的说明 10230039
捐赠科研通 3042069
什么是DOI,文献DOI怎么找? 1669783
邀请新用户注册赠送积分活动 799315
科研通“疑难数据库(出版商)”最低求助积分说明 758774