Automated Detection System Based on Convolution Neural Networks for Retained Root, Endodontic Treated Teeth, and Implant Recognition on Dental Panoramic Images

卷积神经网络 计算机科学 人工智能 牙科 卷积(计算机科学) 分割 牙种植体 计算机视觉 人工神经网络 模式识别(心理学) 医学 植入 外科
作者
Shih-Lun Chen,Tsung‐Yi Chen,Yi-Cheng Mao,Szu-Yin Lin,Ya-Yun Huang,Chiung-An Chen,Yuan-Jin Lin,Yo-Ming Hsu,Chi-An Li,Wei-Yuan Chiang,Kai-Yi Wong,Patricia Angela R. Abu
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:22 (23): 23293-23306 被引量:2
标识
DOI:10.1109/jsen.2022.3211981
摘要

For a daily dental practice, the Panoramic (PANO) X-ray film is one of the most commonly used dental X-rays. One of its important advantages is the coverage of most anatomic structures and clinical findings in a single film. Important information about clinical treatment and diagnosis can be provided from the expert analysis of the PANO. Combined with the assistance of artificial intelligence, the application has great potential. The purpose of this study was to propose an automated detection system based on several modern convolutional neural networks (CNNs) for the classification of retained roots, endodontic treated teeth, and implants. In order to meet the standards of practical clinical application, the database used in this study is provided by dentists with more than three years of practical experience. The contributions of this work are given as follows: 1) proposed more advanced techniques for image segmentation and image position in dental radiographs; 2) a better image enhancement is proposed, which improves the accuracy of the five CNNs to more than 96%; and 3) combined with the fuzzy operation to achieve more powerful and accurate anomaly detection. The final result has an accuracy rate of up to 98.75%. It is about 20% higher than previous techniques. This research designed to identify and document each specific finding automatically could help dentists obtain an objective treatment evaluation and provide dentists more precious clinical time for dental operations and communication with patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
正直从凝完成签到,获得积分10
2秒前
J女士完成签到 ,获得积分10
2秒前
2秒前
lwl666应助快乐游轮采纳,获得10
4秒前
大个应助科研通管家采纳,获得10
6秒前
6秒前
清秀藏今应助科研通管家采纳,获得10
6秒前
6秒前
JamesPei应助科研通管家采纳,获得30
6秒前
852应助科研通管家采纳,获得10
6秒前
11111111111完成签到,获得积分10
6秒前
慕青应助科研通管家采纳,获得10
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
英姑应助科研通管家采纳,获得10
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
南科易梦应助科研通管家采纳,获得10
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
Orange应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
7秒前
Sean完成签到 ,获得积分0
7秒前
坦率的枕头完成签到,获得积分10
8秒前
djbj2022发布了新的文献求助20
10秒前
帆帆帆完成签到 ,获得积分10
15秒前
加油呀完成签到,获得积分10
15秒前
闪闪寒云完成签到 ,获得积分10
15秒前
开心寄松完成签到,获得积分10
17秒前
辛勤的曼青完成签到,获得积分10
18秒前
Tingting完成签到 ,获得积分10
19秒前
22秒前
难过的谷芹应助正直从凝采纳,获得10
22秒前
zhang值完成签到,获得积分10
22秒前
123完成签到,获得积分10
25秒前
rocenphone完成签到,获得积分10
25秒前
千江月完成签到,获得积分10
26秒前
玩是罪恶的完成签到,获得积分10
26秒前
超帅的灭龙完成签到,获得积分10
26秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Implantable Technologies 500
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Theories of Human Development 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 计算机科学 内科学 纳米技术 复合材料 化学工程 遗传学 催化作用 物理化学 基因 冶金 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3922236
求助须知:如何正确求助?哪些是违规求助? 3466989
关于积分的说明 10945959
捐赠科研通 3196020
什么是DOI,文献DOI怎么找? 1765880
邀请新用户注册赠送积分活动 855802
科研通“疑难数据库(出版商)”最低求助积分说明 795155