Multimodal attention-based deep learning for automatic modulation classification

计算机科学 人工智能 感知器 传输(电信) 无线 调制(音乐) 自编码 模式识别(心理学) 多层感知器 深度学习 电子工程 人工神经网络 工程类 电信 美学 哲学
作者
Han Jia,Zhiyong Yu,Jian Yang
出处
期刊:Frontiers in Energy Research [Frontiers Media SA]
卷期号:10 被引量:2
标识
DOI:10.3389/fenrg.2022.1041862
摘要

Wireless Internet of Things (IoT) is widely accepted in data collection and transmission of power system, with the prerequisite that the base station of wireless IoT be compatible with a variety of digital modulation types to meet data transmission requirements of terminals with different modulation modes. As a key technology in wireless IoT communication, Automatic Modulation Classification (AMC) manages resource shortage and improves spectrum utilization efficiency. And for better accuracy and efficiency in the classification of wireless signal modulation, Deep learning (DL) is frequently exploited. It is found in real cases that the signal-to-noise ratio (SNR) of wireless signals received by base station remains low due to complex electromagnetic interference from power equipment, increasing difficulties for accurate AMC. Therefore, inspired by attention mechanism of multi-layer perceptron (MLP), AMC-MLP is introduced herein as a novel AMC method for low SNR signals. Firstly, the sampled I/Q data is converted to constellation diagram, smoothed pseudo Wigner-Ville distribution (SPWVD), and contour diagram of the spectral correlation function (SCF). Secondly, convolution auto-encoder (Conv-AE) is used to denoise and extract image feature vectors. Finally, MLP is employed to fuse multimodal features to classify signals. AMC-MLP model utilizes the characterization advantages of feature images in different modulation modes and boosts the classification accuracy of low SNR signals. Results of simulations on RadioML 2016.10A public dataset prove as well that AMC-MLP provides significantly better classification accuracy of signals in low SNR range than that of other latest deep-learning AMC methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
John发布了新的文献求助10
刚刚
1秒前
2秒前
小青椒应助kento采纳,获得50
3秒前
情怀应助配你zzz采纳,获得10
4秒前
4秒前
4秒前
慕青应助ctttt采纳,获得10
4秒前
研友_8DAv0L发布了新的文献求助10
4秒前
欣喜的高烽完成签到 ,获得积分10
5秒前
熊风发布了新的文献求助10
5秒前
plaaf完成签到,获得积分10
5秒前
bkagyin应助hope采纳,获得10
6秒前
王雨薇发布了新的文献求助10
6秒前
sssssssssss完成签到,获得积分10
6秒前
kyt完成签到,获得积分10
7秒前
犹豫的初丹完成签到,获得积分10
8秒前
Choi发布了新的文献求助10
8秒前
归一然完成签到,获得积分10
9秒前
半农应助上山的吗喽采纳,获得50
9秒前
9秒前
dahuihui完成签到,获得积分10
9秒前
拂晓完成签到,获得积分10
9秒前
10秒前
董竹君完成签到,获得积分10
11秒前
在水一方应助研友_8DAv0L采纳,获得10
11秒前
11秒前
yuanmm完成签到,获得积分10
11秒前
闪闪亮亮111完成签到,获得积分10
11秒前
Xxx123完成签到,获得积分10
11秒前
健壮的芷容完成签到,获得积分10
12秒前
Olsters完成签到,获得积分10
12秒前
ghost202完成签到,获得积分10
13秒前
13秒前
lilikou完成签到,获得积分10
13秒前
嘻嘻嘻嘻嘻嘻应助归一然采纳,获得10
13秒前
joy完成签到,获得积分0
14秒前
小五完成签到 ,获得积分10
14秒前
细心的小懒虫完成签到,获得积分10
14秒前
科研小白完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651684
求助须知:如何正确求助?哪些是违规求助? 4785671
关于积分的说明 15055211
捐赠科研通 4810389
什么是DOI,文献DOI怎么找? 2573087
邀请新用户注册赠送积分活动 1529005
关于科研通互助平台的介绍 1487961