Energy-Based Adversarial Transfer Network for Cross-Domain Fault Diagnosis of Electro-Mechanical Systems

鉴别器 计算机科学 分类器(UML) 人工智能 学习迁移 模式识别(心理学) 试验数据 特征(语言学) 断层(地质) 特征提取 特征学习 机器学习 哲学 地质学 探测器 地震学 电信 程序设计语言 语言学
作者
Jingli Yang,Tianyu Gao,Shouda Jiang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-11 被引量:3
标识
DOI:10.1109/tim.2022.3216593
摘要

Recently, fault diagnosis methods based on deep learning for electro-mechanical systems have achieved excellent classification performance when the training and test data satisfied independent and identical distributions. However, distribution inconsistencies frequently occur due to operating condition variations. As a promising tool for cross-domain fault diagnosis, transfer learning can exploit source domain knowledge to facilitate target domain learning. To implement cross-domain fault diagnosis for electro-mechanical systems, an energy-based adversarial transfer network is proposed in this paper to reduce the distribution discrepancies among different domain features by incorporating an energy-based discrimination strategy into the adversarial transfer learning mechanism, which contains a state recognition module, a discrepancy metric module, and a domain discrimination module. A feature extractor is designed in the state recognition module to provide effective spatio-temporal feature representations for different domains, and an unsupervised loss is constructed according to the entropy minimization principle to improve the recognition capability of the classifier for data samples in the target domain. In the discrepancy metric module, feature distribution alignment is achieved by minimizing the distribution differences between the source domain features and the target domain ones. Furthermore, an energy discriminator is developed to effectively drive adversarial learning by introducing a flexible energy function instead of an explicit probability calculation for distinguishing the feature distributions of different domains. Two bearing datasets and one circuit dataset derived from different test platforms with various loads, speeds, stresses and fault degrees are investigated to verify the merits of the proposed model under variable operating conditions. The experimental results indicate that the proposal is superior to other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yangmiemie发布了新的文献求助10
刚刚
科研通AI5应助呜呜呜采纳,获得10
1秒前
汉堡包应助chen采纳,获得10
1秒前
子车三问发布了新的文献求助30
2秒前
Ava应助勺儿采纳,获得10
3秒前
shenglll完成签到 ,获得积分10
4秒前
852应助优雅的水香采纳,获得10
5秒前
天天快乐应助仲夏采纳,获得10
5秒前
久而久之发布了新的文献求助10
6秒前
6秒前
7秒前
RXY完成签到,获得积分10
10秒前
万能图书馆应助安111采纳,获得10
10秒前
嘟嘟雯发布了新的文献求助10
10秒前
11秒前
张婷完成签到,获得积分10
12秒前
13秒前
13秒前
zoushiyi完成签到,获得积分10
15秒前
16秒前
清璃完成签到 ,获得积分10
16秒前
16秒前
jason完成签到,获得积分10
17秒前
仲夏发布了新的文献求助10
17秒前
chen发布了新的文献求助10
17秒前
科研通AI5应助蒜香炒田鸡采纳,获得10
17秒前
18秒前
18秒前
19秒前
莫x莫完成签到 ,获得积分10
19秒前
20秒前
jason发布了新的文献求助10
21秒前
顺利凌寒发布了新的文献求助10
23秒前
称心花生发布了新的文献求助10
24秒前
26秒前
老实的怀蕊完成签到,获得积分10
26秒前
桐桐应助罗小罗同学采纳,获得10
27秒前
27秒前
今天只做一件事应助岑岑采纳,获得10
29秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802646
求助须知:如何正确求助?哪些是违规求助? 3348268
关于积分的说明 10337419
捐赠科研通 3064257
什么是DOI,文献DOI怎么找? 1682495
邀请新用户注册赠送积分活动 808168
科研通“疑难数据库(出版商)”最低求助积分说明 764013