First-principles calculations to investigate pressure-driven electronic phase transition of lead-free halide perovskites KMCl3 (M = Ge, Sn) for superior optoelectronic performance

卤化物 静水压力 带隙 晶格常数 密度泛函理论 相变 材料科学 四方晶系 光电子学 半导体 环境压力 直接和间接带隙 离子键合 凝聚态物理 化学 结晶学 晶体结构 衍射 热力学 计算化学 无机化学 物理 光学 离子 有机化学
作者
Ovijit Das,Md Saiduzzaman,Khandaker Monower Hossain,Ismile Khan Shuvo,Mohammad Mizanur Rahman,Sohail Ahmad,S.K. Mitro
出处
期刊:Results in physics [Elsevier BV]
卷期号:44: 106212-106212 被引量:24
标识
DOI:10.1016/j.rinp.2023.106212
摘要

This article investigates the physical properties of lead-free tin- and germanium-based halide perovskites under pressure via the density functional theory to use as potential photovoltaic materials. Specifically, the structural, electronic, optical, and mechanical properties of KMCl3 (M = Ge, Sn) under diverse hydrostatic pressures ranging from 0 to 8 GPa are examined to vindicate the compounds' superiority for useful applications. The structures show high precision in terms of lattice constants, which approves the formerly published data. The calculated lattice constant (5.261 and 5.58 Å for KGeCl3 and KGeCl3, respectively, at 0 GPa) and unit cell volume (145.67 and 173.80 Å3 for KGeCl3 and KGeCl3, respectively, at 0 GPa) are significantly reduced ((lattice constant 4.924 Å (5.183 Å) and unit cell volume 119.41 Å3 (139.39 Å3) for KGeCl3 (KSnCl3) at 8 GPa) due to the pressure effect, while the cubic phase stability is maintained. Under ambient pressure, the calculated band gap reveals the compounds' semiconducting nature. Nevertheless, when pressure is increased, the band gap narrows, enhancing its conductivity and igniting its route towards semiconductor to metallic transition. The ionic and covalent bonding nature of K-Cl and Ge(Sn)-Cl, respectively; as well as the decrement of bond length due to external pressure are marked by charge density mapping. The optical functions are also enhanced when pressure is devoted, vindicating the chosen perovskites' suitability in various optoelectronic devices in the visible and ultraviolet ranges. Likewise, while maintaining mechanical stability, hydrostatic pressure significantly impacts mechanical properties. The ductility and anisotropic behavior of both perovskites are intensified under applied pressure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
年轻迪奥发布了新的文献求助10
刚刚
osachon完成签到,获得积分10
2秒前
chenchaofan发布了新的文献求助10
3秒前
传奇3应助刘国建郭菱香采纳,获得10
3秒前
现代寄文关注了科研通微信公众号
4秒前
4秒前
Thien发布了新的文献求助10
9秒前
KJ完成签到,获得积分10
9秒前
9秒前
10秒前
安静的幼旋完成签到,获得积分10
10秒前
休闲羽完成签到,获得积分10
10秒前
liprico完成签到,获得积分10
11秒前
朝菌完成签到,获得积分10
11秒前
11秒前
小蘑菇应助bb采纳,获得10
12秒前
14秒前
整齐荟发布了新的文献求助30
14秒前
等风的人发布了新的文献求助10
14秒前
各自cc发布了新的文献求助10
15秒前
黎_驳回了乐乐应助
15秒前
17秒前
可期发布了新的文献求助20
18秒前
Arthur完成签到,获得积分10
18秒前
Ava应助苏先生采纳,获得10
19秒前
20秒前
bb完成签到,获得积分10
20秒前
21秒前
可乐完成签到,获得积分10
22秒前
无花果应助chenchaofan采纳,获得10
22秒前
量子星尘发布了新的文献求助10
24秒前
cureall应助木耶采纳,获得10
26秒前
江心秋月完成签到,获得积分10
27秒前
27秒前
李66完成签到 ,获得积分10
27秒前
领导范儿应助迅速芸遥采纳,获得10
28秒前
28秒前
29秒前
充电宝应助江心秋月采纳,获得10
30秒前
文耳东完成签到,获得积分10
31秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954521
求助须知:如何正确求助?哪些是违规求助? 3500555
关于积分的说明 11099959
捐赠科研通 3231062
什么是DOI,文献DOI怎么找? 1786258
邀请新用户注册赠送积分活动 869908
科研通“疑难数据库(出版商)”最低求助积分说明 801717