亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Residual-Hypergraph Convolution Network: A Model-Based and Data-Driven Integrated Approach for Fault Diagnosis in Complex Equipment

超图 残余物 计算机科学 卷积(计算机科学) 数据挖掘 过程(计算) 数据驱动 数据建模 断层(地质) 分布式计算 可靠性工程 工程类 人工智能 算法 数据库 人工神经网络 离散数学 地质学 操作系统 地震学 数学
作者
Liqiao Xia,Yongshi Liang,Pai Zheng,Xiao Huang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-11 被引量:32
标识
DOI:10.1109/tim.2022.3227609
摘要

Timely and accurate fault diagnosis plays a critical role in today's smart manufacturing practices, saving invaluable time and expenditure on maintenance process. To date, numerous data-driven approaches have been introduced for equipment fault diagnosis, and part of them attempt to involve equipment knowledge in their data-driven models. However, those combinations mainly concentrate on feature engineering and superposition of their separate results without considering or leveraging the relationship between equipment knowledge and collecting sensor data. To fill this gap, this research proposes a residual-hypergraph convolution network (Res-HGCN) approach that holistically embeds equipment's structure and operational mechanisms as a hypergraph form into data-driven model, considering the reaction among equipment's components. The generic model-based hypergraph construction framework is first introduced, which represents a synergetic mechanism of complex equipment. Then, a multisensory data-driven Res-HGCN approach, combining residual block and hypergraph convolution network (HGCN), is presented for fault diagnosis based on predefined hypergraph. Lastly, a case study of turbofan engine is conducted and compared with other typical methods to reveal the superiority of the proposed approach. This work establishes the association of different sensing variables through equipment's structure and operational mechanisms, thus integrating the advantages of model-based and data-driven-based approaches holistically. It is envisioned that this research can provide insightful knowledge for many other model-based and data-driven integrated manufacturing scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阔达芾发布了新的文献求助10
1秒前
Delight完成签到 ,获得积分0
1秒前
CodeCraft应助小蓝采纳,获得10
1秒前
寒冷银耳汤完成签到,获得积分10
2秒前
可爱的函函应助wxx采纳,获得10
2秒前
Continue发布了新的文献求助10
2秒前
betyby完成签到 ,获得积分10
3秒前
5秒前
7秒前
niko完成签到,获得积分10
9秒前
11秒前
镜小小静发布了新的文献求助10
11秒前
niko发布了新的文献求助10
12秒前
小红发布了新的文献求助10
13秒前
13秒前
Criminology34应助七宝大当家采纳,获得10
14秒前
健壮傲之完成签到 ,获得积分10
16秒前
111发布了新的文献求助10
17秒前
天份发布了新的文献求助30
18秒前
20秒前
丽丽完成签到 ,获得积分10
21秒前
喜悦宫苴完成签到,获得积分10
23秒前
山川日月完成签到,获得积分10
24秒前
小红完成签到,获得积分10
26秒前
Marciu33应助科研通管家采纳,获得10
29秒前
Tanya47应助科研通管家采纳,获得10
29秒前
Tanya47应助科研通管家采纳,获得10
29秒前
烟花应助科研通管家采纳,获得10
29秒前
Tanya47应助科研通管家采纳,获得10
29秒前
科研通AI6应助科研通管家采纳,获得10
29秒前
量子星尘发布了新的文献求助10
32秒前
32秒前
mathmotive完成签到,获得积分10
32秒前
欣慰外套完成签到 ,获得积分10
32秒前
ccc发布了新的文献求助10
35秒前
Akim应助howgoods采纳,获得10
35秒前
xy发布了新的文献求助10
36秒前
可一可再完成签到 ,获得积分10
37秒前
38秒前
小迷糊完成签到 ,获得积分10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663986
求助须知:如何正确求助?哪些是违规求助? 4856002
关于积分的说明 15106826
捐赠科研通 4822369
什么是DOI,文献DOI怎么找? 2581425
邀请新用户注册赠送积分活动 1535585
关于科研通互助平台的介绍 1493853