已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Using Hybrid LSTM Neural Networks to Detect Anomalies in the Fiber Tube Manufacturing Process

计算机科学 过程(计算) 人工神经网络 人工智能 操作系统
作者
Zbigniew Gomółka,Ewa Żesławska,Lukasz Olbrot
出处
期刊:Applied sciences [Multidisciplinary Digital Publishing Institute]
卷期号:15 (3): 1383-1383
标识
DOI:10.3390/app15031383
摘要

The production process of tubes for fiber optic cables is a complex process, where proper execution is crucial to the quality of the final product. This process has a complex state vector whose structure and coordinates dynamically change during the tube extrusion process. Small fluctuations in process parameters, such as temperature, extrusion pressure, production speed, and optical fiber tension, affect the optical attenuation of the final product. Such defects necessitate the withdrawal of the product. Due to the high number of process coordinates and the technological inability to automatically label those segments of the production process that cause anomalies in the final product, the authors used data clustering methods to create a training set that enabled the use of neural tools for anomaly detection. The system proposed in the main part of the paper includes a hybrid Long short-term memory (LSTM) network model, which is fed with data streams recorded on the tube extrusion production line. The input module, which performs preprocessing of input data, conducts multiresolution analysis of recorded process parameters, and recommends the process state’s belonging to a set of classes describing individual production anomalies to appropriate LSTM network modules. The learning process of the three–channel network allowed effective recognition of five classes of the monitored tube production process. The fit level of the proposed network model reached R2 values of ≥0.85.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
云中漫步完成签到,获得积分10
2秒前
aminminmin发布了新的文献求助10
2秒前
XXXXY发布了新的文献求助10
4秒前
liunshi发布了新的文献求助10
5秒前
江江江江完成签到,获得积分10
5秒前
冷笑完成签到,获得积分10
6秒前
李健的小迷弟应助潇洒yu采纳,获得10
7秒前
自由的明雪完成签到,获得积分20
10秒前
打打应助粗暴的乐巧采纳,获得10
11秒前
12秒前
13秒前
14秒前
脑洞疼应助aminminmin采纳,获得30
19秒前
DrDaiJune发布了新的文献求助10
19秒前
tejing1158发布了新的文献求助10
20秒前
25秒前
28秒前
赘婿应助Q蒂采纳,获得10
29秒前
善学以致用应助阿九采纳,获得10
30秒前
小猛人发布了新的文献求助10
31秒前
Lucas应助呆呆采纳,获得10
32秒前
七安得安完成签到,获得积分10
32秒前
35秒前
英俊的铭应助小猛人采纳,获得10
40秒前
Q蒂发布了新的文献求助10
42秒前
共享精神应助正直的雁开采纳,获得10
44秒前
硬汉的长强穴完成签到,获得积分10
45秒前
ding应助illi采纳,获得10
45秒前
冰激凌完成签到,获得积分10
45秒前
七慕凉应助孟123采纳,获得20
49秒前
zzzz完成签到,获得积分10
50秒前
可爱的函函应助淡然冰之采纳,获得10
50秒前
tzj完成签到,获得积分10
51秒前
52秒前
52秒前
53秒前
54秒前
PMoLGGYM2021发布了新的文献求助10
54秒前
耶嘿发布了新的文献求助10
54秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Research Handbook on Inflation 900
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3940416
求助须知:如何正确求助?哪些是违规求助? 3486144
关于积分的说明 11036878
捐赠科研通 3216011
什么是DOI,文献DOI怎么找? 1777626
邀请新用户注册赠送积分活动 863705
科研通“疑难数据库(出版商)”最低求助积分说明 798972