iAnOxPep: A Machine Learning Model for the Identification of Anti-Oxidative Peptides Using Ensemble Learning

集成学习 鉴定(生物学) 人工智能 机器学习 计算机科学 氧化磷酸化 计算生物学 化学 生物化学 生物 植物
作者
Mir Tanveerul Hassan,Hilal Tayara,Kil To Chong
标识
DOI:10.1109/tcbb.2024.3489614
摘要

Due to their safety, high activity, and plentiful sources, antioxidant peptides, particularly those produced from food, are thought to be prospective competitors to synthetic antioxidants in the fight against free radical-mediated illnesses. The lengthy and laborious trial-and-error method for identifying antioxidative peptides (AOP) has raised interest in creating computational-based methods. There exist two state-of-the-art AOP predictors; however, the restriction on peptide sequence length makes them inviable. By overcoming the aforementioned problem, a novel predictor might be useful in the context of AOP prediction. The method has been trained, tested, and evaluated on two datasets: a balanced one and an unbalanced one. We used seven different descriptors and five machine-learning (ML) classifiers to construct 35 baseline models. Five ML classifiers were further trained to create five meta-models using the combined output of 35 baseline models. Finally, these five meta-models were aggregated together through ensemble learning to create a robust predictive model named iAnOxPep. On both datasets, our proposed model demonstrated good prediction performance when compared to baseline models and meta-models, demonstrating the superiority of our approach in the identification of AOPs. For the purpose of screening and identifying possible AOPs, we anticipate that the iAnOxPep method will be an invaluable tool.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Why顺利完成签到,获得积分10
刚刚
ctyyyu发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
阳光的巧荷完成签到,获得积分10
1秒前
1秒前
情怀应助MengpoZhao采纳,获得10
1秒前
1秒前
诺z完成签到,获得积分10
1秒前
KL完成签到,获得积分10
1秒前
1秒前
xiaoshuwang发布了新的文献求助30
2秒前
bkagyin应助yy采纳,获得10
2秒前
2秒前
3秒前
3秒前
FashionBoy应助鲤鱼采纳,获得10
3秒前
FashionBoy应助杨洋采纳,获得10
4秒前
5秒前
思源应助666采纳,获得10
5秒前
6秒前
oip1799完成签到 ,获得积分10
6秒前
sszxlijin完成签到,获得积分10
6秒前
xiao发布了新的文献求助10
6秒前
shuogesama发布了新的文献求助10
6秒前
zhyi完成签到,获得积分10
7秒前
phl完成签到,获得积分10
7秒前
搜集达人应助yuan采纳,获得10
7秒前
机智毛豆完成签到,获得积分10
7秒前
8秒前
8秒前
yao发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助30
8秒前
蒜香炒田鸡完成签到,获得积分10
8秒前
大模型应助Savannah采纳,获得10
8秒前
8秒前
8秒前
粗暴的乐巧完成签到,获得积分10
8秒前
8秒前
万能图书馆应助夹心采纳,获得10
8秒前
yu发布了新的文献求助30
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719773
求助须知:如何正确求助?哪些是违规求助? 5257547
关于积分的说明 15289528
捐赠科研通 4869516
什么是DOI,文献DOI怎么找? 2614832
邀请新用户注册赠送积分活动 1564816
关于科研通互助平台的介绍 1522006