Mapping Soil Organic Matter in Black Soil Cropland Areas Using Remote Sensing and Environmental Covariates

环境科学 土壤有机质 协变量 有机质 数字土壤制图 土壤科学 遥感 土壤分类 土壤水分 地理 生态学 数学 生物 统计
作者
Liang Yu,Chong Luo,Wenqi Zhang,Zexin Wu,Deqiang Zang
出处
期刊:Agriculture [Multidisciplinary Digital Publishing Institute]
卷期号:15 (3): 339-339
标识
DOI:10.3390/agriculture15030339
摘要

The accurate prediction of soil organic matter (SOM) content is important for sustainable agriculture and effective soil management. This task is particularly challenging due to the variability in factors influencing SOM distribution across different cultivated land types, as well as the site-specific responses of SOM to remote sensing data and environmental covariates, especially in the black soil region of northeastern China, where SOM exhibits significant spatial variability. This study evaluated the variations on the importance of different remote sensing imagery and environmental covariates in different cultivated land zones. A total of 180 soil samples (0–20 cm) were collected from Youyi County, Heilongjiang Province, China, and multi-year synthetic bare soil images from 2014 to 2022 (focusing on April and May) were acquired using Google Earth Engine. Combining three types of environmental covariates such as drainage, climate and topography, the study area was categorized into dry field and paddy field. Then, the SOM prediction model was constructed using random forest regression method and the accuracy of different strategies was evaluated by 10-fold cross-validation. The findings indicated that, (1) in the overall regression analysis, combining drainage and climate variables and multi-year synthetic remote sensing images of May could attain the highest prediction accuracy, and the importance of environmental covariates was ranked as follows: remote sensing (RS) > climate (CLI) > drainage (DN) > Topography (TP). (2) Zonal regression analysis was conducted with a high degree of precision, as evidenced by an R2 of 0.72 and an impressively low RMSE of 0.73%. The time window for remote monitoring of SOM was different for dry field and paddy field. More specifically, the optimal time frames for SOM prediction in dryland were identified as April and May, while those for paddy fields were concentrated in May. (3) In addition, the importance of diverse environmental covariates was observed to vary with the cultivated land types. In regions characterized by intricate topography, such as dry fields, the contributions of remote sensing images and climate variables assumed a heightened importance. Conversely, in paddy fields featuring flat terrain, the roles of climate and drainage variables played a more substantial role in influencing the outcomes. These findings underscore the importance of selecting appropriate environmental inputs for improving SOM prediction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
GGB完成签到,获得积分10
2秒前
深情安青应助科研通管家采纳,获得10
3秒前
hwx应助科研通管家采纳,获得20
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
土豆酱完成签到,获得积分10
3秒前
Owen应助科研通管家采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
若雨凌风应助科研通管家采纳,获得20
3秒前
3秒前
Owen应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
lene应助科研通管家采纳,获得10
4秒前
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
revo完成签到,获得积分10
4秒前
大个应助科研通管家采纳,获得10
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
科研助手6应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
若雨凌风应助科研通管家采纳,获得20
4秒前
JamesPei应助yangliu071998采纳,获得10
4秒前
4秒前
我是老大应助科研通管家采纳,获得10
4秒前
zzx发布了新的文献求助10
4秒前
4秒前
故酒应助科研通管家采纳,获得10
4秒前
烟花应助科研通管家采纳,获得10
5秒前
oaixlittle完成签到,获得积分10
5秒前
5秒前
5秒前
pongpog123完成签到,获得积分10
6秒前
善学以致用应助gy采纳,获得10
6秒前
ableyy完成签到,获得积分10
6秒前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3820576
求助须知:如何正确求助?哪些是违规求助? 3363504
关于积分的说明 10422977
捐赠科研通 3081912
什么是DOI,文献DOI怎么找? 1695276
邀请新用户注册赠送积分活动 815042
科研通“疑难数据库(出版商)”最低求助积分说明 768819