Single-Atom Iridium on Hematite Photoanodes for Solar Water Splitting: Catalyst or Spectator?

赤铁矿 化学 光电流 催化作用 分解水 X射线光电子能谱 光化学 光谱学 化学工程 光催化 材料科学 光电子学 矿物学 物理 工程类 量子力学 生物化学
作者
Qian Guo,Qi Zhao,Rachel Crespo‐Otero,Devis Di Tommaso,Junwang Tang,Stoichko D. Dimitrov,Maria‐Magdalena Titirici,Xuanhua Li,Ana Jorge Sobrido
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:145 (3): 1686-1695 被引量:53
标识
DOI:10.1021/jacs.2c09974
摘要

Single-atom catalysts (SACs) on hematite photoanodes are efficient cocatalysts to boost photoelectrochemical performance. They feature high atom utilization, remarkable activity, and distinct active sites. However, the specific role of SACs on hematite photoanodes is not fully understood yet: Do SACs behave as a catalytic site or as a spectator? By combining spectroscopic experiments and computer simulations, we demonstrate that single-atom iridium (sIr) catalysts on hematite (α-Fe2O3/sIr) photoanodes act as a true catalyst by trapping holes from hematite and providing active sites for the water oxidation reaction. In situ transient absorption spectroscopy showed a reduced number of holes and shortened hole lifetime in the presence of sIr. This was particularly evident on the second timescale, indicative of fast hole transfer and depletion toward water oxidation. Intensity-modulated photocurrent spectroscopy evidenced a faster hole transfer at the α-Fe2O3/sIr/electrolyte interface compared to that at bare α-Fe2O3. Density functional theory calculations revealed the mechanism for water oxidation using sIr as a catalytic center to be the preferred pathway as it displayed a lower onset potential than the Fe sites. X-ray photoelectron spectroscopy demonstrated that sIr introduced a mid-gap of 4d state, key to the fast hole transfer and hole depletion. These combined results provide new insights into the processes controlling solar water oxidation and the role of SACs in enhancing the catalytic performance of semiconductors in photo-assisted reactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
aha发布了新的文献求助10
4秒前
WENc完成签到,获得积分10
5秒前
独家阿吉豆完成签到 ,获得积分10
6秒前
杨圣君发布了新的文献求助10
6秒前
王术完成签到,获得积分10
7秒前
7秒前
所所应助zhaoyunxiang采纳,获得20
7秒前
9秒前
9秒前
9秒前
充电宝应助花怜采纳,获得10
10秒前
ieZH完成签到 ,获得积分10
10秒前
11秒前
123发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
待烟散尽云起时完成签到,获得积分10
13秒前
12完成签到 ,获得积分20
14秒前
15秒前
15秒前
Asuka发布了新的文献求助10
15秒前
15秒前
彭于晏应助孝陵卫黑旋风采纳,获得20
16秒前
脑洞疼应助木土采纳,获得10
16秒前
17秒前
苗条一兰完成签到,获得积分10
17秒前
王姝予发布了新的文献求助30
18秒前
叁壶薏苡发布了新的文献求助10
20秒前
20秒前
21秒前
bkagyin应助孙皓阳采纳,获得10
21秒前
张zhang发布了新的文献求助10
22秒前
丙烯酰氯完成签到,获得积分10
24秒前
liyu发布了新的文献求助10
24秒前
呆萌的小蚂蚁完成签到,获得积分10
25秒前
孝陵卫黑旋风完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5191054
求助须知:如何正确求助?哪些是违规求助? 4374552
关于积分的说明 13621498
捐赠科研通 4228481
什么是DOI,文献DOI怎么找? 2319295
邀请新用户注册赠送积分活动 1317858
关于科研通互助平台的介绍 1267898