Temperature-dependent viscoelastic liquid MOFs based cellulose gel electrolyte for advanced lithium-sulfur batteries over an extensive temperature range

材料科学 电解质 阳极 化学工程 锂(药物) 电极 化学 医学 工程类 内分泌学 物理化学
作者
Yangze Huang,Lixuan Zhang,Jiawen Ji,Chenyang Cai,Yu Fu
出处
期刊:Energy Storage Materials [Elsevier BV]
卷期号:64: 103065-103065 被引量:27
标识
DOI:10.1016/j.ensm.2023.103065
摘要

The uncontrolled growth of lithium dendrites severely limits the practical use of Li-S batteries. Additionally, cell temperature increases during operation, accelerating dendrite growth and side reactions. To stabilize the anode over a wide temperature range, we proposed a promising solution of a novel temperature-dependent viscoelastic liquid UiO66 MOFs-based cellulose gel electrolyte. This specially engineered electrolyte demonstrated superior stabilization of the anode. It adopted the "blocking anions and promoting Li+ transfer" strategy, resulting in a uniform Li+ flux deposition and the formation of a stable and dense solid electrolyte interphase layer, effectively suppressing dendrite growth. To further improve the cycling performance of the cell, a hollow transition bi-metal selenide (FeCo-Se2/NC) was developed as the sulfur host material. This complex exhibited a strong chemisorption capacity for polysulfides and a high catalytic ability to expedite the conversion process of lithium polysulfides. The final cell achieved a high capacity of 687.2 mAh g−1 after 500 cycles at 3 C with a minimal fading rate of 0.04 % per cycle. It also demonstrated a high area capacity of 5.78 mAh cm−2 at a high sulfur loading of 6.2 mg cm−2, along with excellent cycling stability under temperature-varying conditions. The findings not only highlighted the commercialization potential of Li-S batteries but also underscored the effectiveness of porous liquid MOFs as a modified layer, effectively stabilizing the Li anode and reducing interfacial impedance between the electrolyte and electrode. Our research paved the way for advanced energy storage solutions that could significantly contribute to a sustainable and eco-friendly future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lily发布了新的文献求助10
刚刚
刚刚
anthea完成签到 ,获得积分10
刚刚
高泽乐完成签到,获得积分10
刚刚
李健应助jjj采纳,获得10
1秒前
小超发布了新的文献求助10
1秒前
缓慢安白完成签到,获得积分20
1秒前
a成发布了新的文献求助10
1秒前
zwhy发布了新的文献求助10
1秒前
无奈凡波完成签到,获得积分10
1秒前
Certainty橙子完成签到 ,获得积分10
2秒前
2秒前
3秒前
传奇3应助等待安柏采纳,获得10
3秒前
Ecokarster完成签到,获得积分10
3秒前
Wu圈圈发布了新的文献求助30
4秒前
4秒前
4秒前
4秒前
愉快草莓发布了新的文献求助10
4秒前
东山完成签到,获得积分20
5秒前
5秒前
D颖发布了新的文献求助10
6秒前
6秒前
77完成签到,获得积分10
6秒前
shi hui应助期待采纳,获得10
6秒前
6秒前
sunwin完成签到,获得积分10
7秒前
7秒前
000完成签到,获得积分10
8秒前
Lucas应助冰山泥采纳,获得10
8秒前
多情山蝶发布了新的文献求助10
8秒前
打打应助Sun采纳,获得10
9秒前
愉快草莓完成签到,获得积分10
9秒前
9秒前
松鼠鳜鱼完成签到,获得积分10
9秒前
科研通AI6应助小超采纳,获得10
10秒前
花花发布了新的文献求助10
10秒前
qianlicao发布了新的文献求助10
10秒前
LUJL完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5260026
求助须知:如何正确求助?哪些是违规求助? 4421555
关于积分的说明 13763412
捐赠科研通 4295658
什么是DOI,文献DOI怎么找? 2356980
邀请新用户注册赠送积分活动 1353341
关于科研通互助平台的介绍 1314535