腐蚀
溶解
Rust(编程语言)
扩散
材料科学
流量(数学)
沉积(地质)
产量(工程)
雷诺数
体积流量
反应速率常数
机械
热力学
冶金
化学
动力学
湍流
物理
物理化学
古生物学
沉积物
生物
量子力学
计算机科学
程序设计语言
作者
Marius Ciprian Ilie,Ioana Maior,Cristian Eugen Răducanu,Iuliana Mihaela Deleanu,Tănase Dobre,Oana Cristina Pârvulescu
出处
期刊:Metals
[MDPI AG]
日期:2023-08-09
卷期号:13 (8): 1425-1425
被引量:2
摘要
The paper focuses on the experimental investigation and mathematical modeling of the corrosion of steel when a film of water flows over its surface. The experimental monitoring of corrosion dynamics in the flowing film was carried out using a laboratory pilot model, exploited in such a way as to obtain data necessary to identify some characteristic parameters of the mathematical model of this problem. The mathematical model of the case takes into account the transfer of oxygen through the liquid film flowing on the surface of the corroding plate where the chemical surface processes characteristic of corrosion occur (dissolution of Fe, oxidation of Fe2+ to Fe3+, formation of surface deposit, etc.). Experimental measurements were used to identify the parameters of the mathematical model, especially the reaction constant of the Fe dissolution rate and the surface oxidation yield of Fe2+ to Fe3+. Calculation of the correlation coefficients for the apparent constant surface reaction rate and process factors showed that they correlate strongly and non-linearly with the Reynolds number (Re) of the film flow, with the cumulative flow duration, and with the cumulative standby time of the experiments. Using the dynamics of the resistance to the transfer of oxygen through the rust film and the dynamics of its thickness resulting from the specific flow of rust deposition, the apparent oxygen diffusion coefficient through the rust film formed on the plate was expressed.
科研通智能强力驱动
Strongly Powered by AbleSci AI