Transferable data-driven capacity estimation for lithium-ion batteries with deep learning: A case study from laboratory to field applications

稳健性(进化) 计算机科学 电压 可靠性工程 数据挖掘 工程类 电气工程 生物化学 基因 化学
作者
Qiao Wang,Min Ye,Xue Cai,Dirk Uwe Sauer,Weihan Li
出处
期刊:Applied Energy [Elsevier]
卷期号:350: 121747-121747 被引量:29
标识
DOI:10.1016/j.apenergy.2023.121747
摘要

Capacity estimation plays a vital role in ensuring the health and safety management of lithium-ion battery-based electric-drive systems. This research focuses on developing a transferable data-driven framework for accurately estimating the capacity of lithium-ion batteries with the same chemistry but different capacities in field applications. The proposed approach leverages universal information from a laboratory dataset and utilizes a pre-trained network designed for small-capacity batteries with constant-current discharging profiles. By applying this framework, capacity estimation for large-capacity batteries under drive cycles can be efficiently achieved with improved performance. In addition, the incremental capacity analysis is employed on two datasets, selecting a robust voltage interval for health indicator extraction with physical interpretations and uncertainty awareness of different fast charging protocols. The feature extraction and dimension increase processes are automated, utilizing the last short charging sequences in wide voltage intervals while considering the uncertainty related to various user charging habits. Results demonstrate that the proposed strategy significantly enhances both robustness and accuracy. When compared to conventional methods, the proposed method exhibits an average root mean square error improvement of 68.40% and 65.89% in the best and worst cases, respectively. The robustness of the proposed strategy is further verified through 30 randomized health indicator verifications. This research showcases the potential of transferable deep learning in improving capacity estimation by leveraging universal information for field applications. The findings emphasize the importance of sharing knowledge across different capacities of lithium-ion batteries, enabling more effective and accurate capacity estimation techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鱼丸发布了新的文献求助10
刚刚
1秒前
善学以致用应助琳琳采纳,获得10
2秒前
小小发布了新的文献求助10
2秒前
2秒前
yourenpkma123发布了新的文献求助20
3秒前
Cathay发布了新的文献求助30
5秒前
wpy发布了新的文献求助10
6秒前
6秒前
good_lucky完成签到,获得积分10
7秒前
Jasper应助程笑笑采纳,获得10
7秒前
7秒前
7秒前
8秒前
康帅傅完成签到,获得积分10
8秒前
8秒前
明天见完成签到,获得积分10
8秒前
KirinLee麒麟完成签到 ,获得积分10
10秒前
隐形曼青应助马子婷采纳,获得10
10秒前
st发布了新的文献求助10
11秒前
miracle完成签到,获得积分10
11秒前
11秒前
lzk完成签到,获得积分10
12秒前
DT发布了新的文献求助10
12秒前
yueshao应助大方小白采纳,获得10
12秒前
12秒前
赘婿应助端庄醉山采纳,获得10
14秒前
橙尘尘完成签到,获得积分10
14秒前
朴素的黄豆完成签到,获得积分10
14秒前
15秒前
黎明完成签到,获得积分10
15秒前
111完成签到,获得积分20
15秒前
科研小白完成签到,获得积分10
15秒前
科研通AI6应助真真采纳,获得10
16秒前
田様应助云中渊采纳,获得10
16秒前
17秒前
程笑笑完成签到,获得积分10
17秒前
可爱的函函应助wpy采纳,获得10
17秒前
多巴胺发布了新的文献求助10
17秒前
旭东静静完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5272536
求助须知:如何正确求助?哪些是违规求助? 4429759
关于积分的说明 13789897
捐赠科研通 4308272
什么是DOI,文献DOI怎么找? 2364084
邀请新用户注册赠送积分活动 1359709
关于科研通互助平台的介绍 1322750