Efficiency improvement and balance in fixed cost allocation: A trade-off approach based on DEA

数据包络分析 度量(数据仓库) 计算机科学 数学优化 补语(音乐) 运筹学 数学 数据挖掘 生物化学 化学 互补 基因 表型
作者
Junfei Chu,Dong Yue,Fangqing Wei
出处
期刊:Computers & Industrial Engineering [Elsevier BV]
卷期号:: 109527-109527
标识
DOI:10.1016/j.cie.2023.109527
摘要

Fixed cost allocation (FCA) is a problem that decision-makers usually encounter in practice. The existing FCA studies based on data envelopment analysis (DEA) have not recognized the trade-off between improving efficiency and balancing FCA result and failed to provide an approach to generate an equilibrium solution between the two goals. In this study, under DEA common-weight evaluation mechanism, we propose an approach for centralized FCA using several principles featuring fairness in the situation where the fixed cost is regarded as a complement of one of the current inputs. It first considers the principle of making equal-proportional efficiency improvements for all the decision-making units (DMUs) in FCA. Then, we define a measure, called “balanced indicator”, to measure the balance of a FCA result. Finally, a bi-objective model is built that considers both the objectives of maximizing the proportional efficiency improvement of the DMUs and improving the balance of the FCA result. A bargaining-game-like model and a trade-off algorithm are provided to generate the final FCA result. Our research contributes by elucidating the trade-off between enhancing efficiency and achieving balance in FCA result. It also makes a distinct contribution by proposing a bargaining-game-like model and a trade-off algorithm to generate a FCA result that is an equilibrium solution between the two goals and ensures no DMU is allocated zero cost. Finally, we demonstrate the superiority of our approach by comparing it with a previous representative approach and applying it to a case study of China National Heavy Duty Truck Group.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助666采纳,获得10
刚刚
LWJ完成签到 ,获得积分10
刚刚
1364135702完成签到 ,获得积分10
4秒前
lianqing完成签到,获得积分10
4秒前
爆米花应助落寞凌柏采纳,获得10
4秒前
动漫大师发布了新的文献求助10
6秒前
6秒前
7秒前
小天发布了新的文献求助10
8秒前
善学以致用应助liaomr采纳,获得10
8秒前
旋转木马9个完成签到 ,获得积分10
9秒前
cannon8应助智智采纳,获得20
10秒前
单纯乞完成签到,获得积分10
11秒前
12秒前
余晖霞光完成签到 ,获得积分10
12秒前
小天完成签到,获得积分10
15秒前
16秒前
搞怪的紫雪完成签到,获得积分10
16秒前
Quentin9998发布了新的文献求助10
16秒前
lalala发布了新的文献求助10
16秒前
17秒前
新世界的蜗牛完成签到,获得积分10
21秒前
21秒前
所所应助通义千问采纳,获得10
22秒前
hss发布了新的文献求助10
23秒前
VDC完成签到,获得积分0
23秒前
zhoujy完成签到,获得积分10
23秒前
浑天与发布了新的文献求助10
25秒前
27秒前
29秒前
槿裡完成签到 ,获得积分10
32秒前
浑天与完成签到,获得积分10
32秒前
wshwx完成签到,获得积分10
33秒前
通义千问发布了新的文献求助10
35秒前
共享精神应助风趣的梦露采纳,获得10
36秒前
理想三寻完成签到,获得积分10
38秒前
通义千问完成签到,获得积分10
42秒前
CodeCraft应助ljljljlj采纳,获得10
43秒前
HEIKU完成签到,获得积分0
44秒前
adazbq完成签到 ,获得积分10
45秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780920
求助须知:如何正确求助?哪些是违规求助? 3326387
关于积分的说明 10227030
捐赠科研通 3041612
什么是DOI,文献DOI怎么找? 1669520
邀请新用户注册赠送积分活动 799081
科研通“疑难数据库(出版商)”最低求助积分说明 758734