Task-Oriented Sensing, Computation, and Communication Integration for Multi-Device Edge AI

计算机科学 任务(项目管理) 计算 GSM演进的增强数据速率 无线 人工智能 电信 算法 工程类 系统工程
作者
Dingzhu Wen,Peixi Liu,Guangxu Zhu,Yuanming Shi,Jie Xu,Yonina C. Eldar,Shuguang Cui
出处
期刊:IEEE Transactions on Wireless Communications [Institute of Electrical and Electronics Engineers]
卷期号:23 (3): 2486-2502 被引量:50
标识
DOI:10.1109/twc.2023.3303232
摘要

This paper studies a new multi-device edge artificial-intelligent (AI) system, which jointly exploits the AI model split inference and integrated sensing and communication (ISAC) to enable low-latency intelligent services at the network edge. In this system, multiple ISAC devices perform radar sensing to obtain multi-view data, and then offload the quantized version of extracted features to a centralized edge server, which conducts model inference based on the cascaded feature vectors. Under this setup and by considering classification tasks, we measure the inference accuracy by adopting an approximate but tractable metric, namely discriminant gain, which is defined as the distance of two classes in the Euclidean feature space under normalized covariance. To maximize the discriminant gain, we first quantify the influence of the sensing, computation, and communication processes on it with a derived closed-form expression. Then, an end-to-end task-oriented resource management approach is developed by integrating the three processes into a joint design. This integrated sensing, computation, and communication (ISCC) design approach, however, leads to a challenging non-convex optimization problem, due to the complicated form of discriminant gain and the device heterogeneity in terms of channel gain, quantization level, and generated feature subsets. Remarkably, the considered non-convex problem can be optimally solved based on the sum-of-ratios method. This gives the optimal ISCC scheme, that jointly determines the transmit power and time allocation at multiple devices for sensing and communication, as well as their quantization bits allocation for computation distortion control. By using human motions recognition as a concrete AI inference task, extensive experiments are conducted to verify the performance of our derived optimal ISCC scheme.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风中半蕾完成签到 ,获得积分20
2秒前
核桃小丸子完成签到 ,获得积分10
6秒前
7秒前
务实的夏菡完成签到,获得积分10
8秒前
12秒前
正直无极发布了新的文献求助10
13秒前
昒冥完成签到,获得积分20
13秒前
13秒前
家伟完成签到,获得积分10
14秒前
14秒前
zww发布了新的文献求助10
14秒前
上官若男应助成一采纳,获得10
15秒前
WYQ完成签到,获得积分10
17秒前
18秒前
量子星尘发布了新的文献求助10
18秒前
友好绿柏发布了新的文献求助10
18秒前
与一完成签到 ,获得积分10
19秒前
香蕉觅云应助22222采纳,获得10
21秒前
23秒前
23秒前
23秒前
hh完成签到,获得积分20
25秒前
26秒前
27秒前
科研通AI5应助zy采纳,获得10
28秒前
WYnepu发布了新的文献求助10
29秒前
30秒前
勤劳鼠标发布了新的文献求助10
31秒前
666发布了新的文献求助10
31秒前
好好发布了新的文献求助10
31秒前
微风完成签到 ,获得积分10
33秒前
34秒前
乌梅丸完成签到,获得积分10
35秒前
35秒前
35秒前
sailingluwl完成签到,获得积分10
35秒前
yuhuan发布了新的文献求助30
36秒前
猪猪hero应助友好绿柏采纳,获得10
37秒前
bkagyin应助小燕要加油采纳,获得10
39秒前
hx完成签到,获得积分10
39秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3867218
求助须知:如何正确求助?哪些是违规求助? 3409471
关于积分的说明 10663754
捐赠科研通 3133679
什么是DOI,文献DOI怎么找? 1728348
邀请新用户注册赠送积分活动 832968
科研通“疑难数据库(出版商)”最低求助积分说明 780510