亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Structure Aware Multi-Graph Network for Multi-Modal Emotion Recognition in Conversations

计算机科学 情态动词 话语 图形 平滑的 人工智能 理论计算机科学 计算机视觉 化学 高分子化学
作者
Duzhen Zhang,Feilong Chen,Jianlong Chang,Xiuyi Chen,Qi Tian
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 3987-3997 被引量:2
标识
DOI:10.1109/tmm.2023.3238314
摘要

Multi-Modal Emotion Recognition in Conversations (MMERC) is an increasingly active research field that leverages multi-modal signals to understand the feelings behind each utterance. Modeling contextual interactions and multi-modal fusion lie at the heart of this field, with graph-based models recently being widely used for MMERC to capture global multi-modal contextual information. However, these models generally mix all modality representations in a single graph, and utterances in each modality are fully connected, potentially ignoring three problems: (1) the heterogeneity of the multi-modal context, (2) the redundancy of contextual information, and (3) over-smoothing of the graph networks. To address these problems, we propose a Structure Aware Multi-Graph Network (SAMGN) for MMERC. Specifically, we construct multiple modality-specific graphs to model the heterogeneity of the multi-modal context. Instead of fully connecting the utterances in each modality, we design a structure learning module that determines whether edges exist between the utterances. This module reduces redundancy by forcing each utterance to focus on the contextual ones that contribute to its emotion recognition, acting like a message propagating reducer to alleviate over-smoothing. Then, we develop the SAMGN via Dual-Stream Propagation (DSP), which contains two propagation streams, i.e., intra- and inter-modal, performed in parallel to aggregate the heterogeneous modality information from multi-graphs. DSP also contains a gating unit that adaptively integrates the co-occurrence information from the above two propagations for emotion recognition. Experiments on two popular MMERC datasets demonstrate that SAMGN achieves new State-Of-The-Art (SOTA) results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笨笨忘幽完成签到,获得积分10
18秒前
37秒前
科研通AI5应助Lliu采纳,获得10
1分钟前
CLTTT完成签到,获得积分10
1分钟前
1分钟前
Lliu发布了新的文献求助10
1分钟前
阿包完成签到 ,获得积分10
1分钟前
充电宝应助辛勤夜柳采纳,获得20
1分钟前
SciGPT应助苏打采纳,获得10
1分钟前
1分钟前
苏打完成签到,获得积分10
2分钟前
苏打发布了新的文献求助10
2分钟前
zommen完成签到 ,获得积分10
2分钟前
2分钟前
aaa4发布了新的文献求助10
2分钟前
2分钟前
wu发布了新的文献求助30
2分钟前
Lliu完成签到,获得积分10
2分钟前
aaa4完成签到,获得积分10
3分钟前
小巧的若云完成签到,获得积分20
3分钟前
土豪的摩托完成签到 ,获得积分10
3分钟前
bc应助科研通管家采纳,获得20
3分钟前
3分钟前
3分钟前
apt完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
Eric800824完成签到 ,获得积分10
4分钟前
辛勤夜柳发布了新的文献求助20
4分钟前
科研通AI5应助害怕的盼芙采纳,获得10
4分钟前
害怕的盼芙完成签到,获得积分20
5分钟前
getgetting留下了新的社区评论
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
迎雪完成签到,获得积分10
5分钟前
郗妫完成签到,获得积分10
5分钟前
可爱的函函应助getgetting采纳,获得10
6分钟前
飘逸的飞丹完成签到 ,获得积分10
6分钟前
7分钟前
zzzyyy发布了新的文献求助10
7分钟前
大个应助科研通管家采纳,获得10
7分钟前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800920
求助须知:如何正确求助?哪些是违规求助? 3346469
关于积分的说明 10329359
捐赠科研通 3062993
什么是DOI,文献DOI怎么找? 1681307
邀请新用户注册赠送积分活动 807463
科研通“疑难数据库(出版商)”最低求助积分说明 763714