Neurophysiological effects of frequency, length, phonological neighborhood density, and iconicity on sign recognition

象似性 400奈米 手语 符号(数学) 语言学 美国手语 词汇判断任务 计算机科学 心理学 语音识别 事件相关电位 认知 数学 数学分析 哲学 神经科学
作者
Xiaohong Zhang,Hong-Wen Cao,Hong Li
出处
期刊:Neuroreport [Lippincott Williams & Wilkins]
卷期号:34 (17): 817-824
标识
DOI:10.1097/wnr.0000000000001959
摘要

Current theories on lexical recognition are mostly based on studies from spoken languages or their written forms. Much less is known about the process of lexical recognition in sign languages. This study aims to examine the neural correlates of sign recognition by investigating the effects of lexical frequency, length, phonological neighborhood density, and iconicity during Chinese Sign Language comprehension. Twenty-two deaf signers viewed a set of sign videos that varied in the 4 lexical properties and decided if they referred to animals, while event-related potential responses were recorded. Data were analyzed through linear mixed-effects models with the lexical variables treated as continuous measures. The results showed that frequency modulated ERP amplitude as early as around 200 ms and in the late N400 time frame. Sign length invoked effects throughout the process, starting from 200 ms and pertaining to the last epoch. Neighborhood density effects were also observed early around 200 ms and later on the N400 and late positive complex (LPC). Iconicity produced robust effects on the N400 and LPC amplitude. Lexical frequency, length, and neighborhood density influence the neural dynamics of sign recognition in a similar way as to spoken words. Iconicity can confer a processing advantage due to closer form-meaning mappings. The results indicate that lexical recognition engages some mechanisms that are universal across the signed and spoken modality, but it can also be regulated by modality-specific properties such as the prevalent iconicity in sign languages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aaa发布了新的文献求助10
刚刚
英俊的铭应助Liu采纳,获得10
1秒前
2秒前
2秒前
4秒前
大尾巴白完成签到,获得积分10
4秒前
李健的小迷弟应助陈雷采纳,获得10
5秒前
5秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
6秒前
老实蝴蝶发布了新的文献求助10
6秒前
6秒前
墨清烟完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
8秒前
grs完成签到 ,获得积分10
9秒前
10秒前
11秒前
狂野忆文发布了新的文献求助10
11秒前
狂野忆文发布了新的文献求助10
11秒前
狂野忆文发布了新的文献求助10
11秒前
狂野忆文发布了新的文献求助10
11秒前
狂野忆文发布了新的文献求助10
11秒前
狂野忆文发布了新的文献求助10
11秒前
狂野忆文发布了新的文献求助10
11秒前
狂野忆文发布了新的文献求助10
11秒前
狂野忆文发布了新的文献求助10
11秒前
狂野忆文发布了新的文献求助10
11秒前
整齐荟发布了新的文献求助10
11秒前
老实蝴蝶完成签到,获得积分10
12秒前
12秒前
思源应助Luna采纳,获得30
13秒前
14秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978025
求助须知:如何正确求助?哪些是违规求助? 3522174
关于积分的说明 11211799
捐赠科研通 3259432
什么是DOI,文献DOI怎么找? 1799614
邀请新用户注册赠送积分活动 878477
科研通“疑难数据库(出版商)”最低求助积分说明 806918