Neurophysiological effects of frequency, length, phonological neighborhood density, and iconicity on sign recognition

象似性 400奈米 手语 符号(数学) 语言学 美国手语 词汇判断任务 计算机科学 心理学 语音识别 事件相关电位 认知 数学 数学分析 哲学 神经科学
作者
Xiaohong Zhang,Hong-Wen Cao,Hong Li
出处
期刊:Neuroreport [Lippincott Williams & Wilkins]
卷期号:34 (17): 817-824
标识
DOI:10.1097/wnr.0000000000001959
摘要

Current theories on lexical recognition are mostly based on studies from spoken languages or their written forms. Much less is known about the process of lexical recognition in sign languages. This study aims to examine the neural correlates of sign recognition by investigating the effects of lexical frequency, length, phonological neighborhood density, and iconicity during Chinese Sign Language comprehension. Twenty-two deaf signers viewed a set of sign videos that varied in the 4 lexical properties and decided if they referred to animals, while event-related potential responses were recorded. Data were analyzed through linear mixed-effects models with the lexical variables treated as continuous measures. The results showed that frequency modulated ERP amplitude as early as around 200 ms and in the late N400 time frame. Sign length invoked effects throughout the process, starting from 200 ms and pertaining to the last epoch. Neighborhood density effects were also observed early around 200 ms and later on the N400 and late positive complex (LPC). Iconicity produced robust effects on the N400 and LPC amplitude. Lexical frequency, length, and neighborhood density influence the neural dynamics of sign recognition in a similar way as to spoken words. Iconicity can confer a processing advantage due to closer form-meaning mappings. The results indicate that lexical recognition engages some mechanisms that are universal across the signed and spoken modality, but it can also be regulated by modality-specific properties such as the prevalent iconicity in sign languages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
搬砖小羊发布了新的文献求助20
1秒前
温暖发布了新的文献求助10
1秒前
111发布了新的文献求助10
1秒前
1秒前
zoe11完成签到,获得积分10
1秒前
震动的沉鱼完成签到 ,获得积分10
1秒前
尹山蝶发布了新的文献求助10
2秒前
zhy完成签到,获得积分10
2秒前
邵丹完成签到 ,获得积分20
2秒前
可爱的刚完成签到,获得积分10
2秒前
2秒前
YingyingFan完成签到,获得积分10
3秒前
称心沁完成签到,获得积分10
3秒前
3秒前
池林完成签到,获得积分10
4秒前
vb123完成签到,获得积分10
4秒前
学术天后完成签到,获得积分10
4秒前
nove999完成签到 ,获得积分10
4秒前
阔达代芹完成签到,获得积分10
4秒前
Xiuxiu发布了新的文献求助30
4秒前
嘿嘿应助年轻迪奥采纳,获得10
5秒前
NexusExplorer应助小白采纳,获得10
6秒前
zhang发布了新的文献求助20
6秒前
MRshenyy完成签到,获得积分10
6秒前
善学以致用应助李不开你采纳,获得10
6秒前
zhai完成签到 ,获得积分10
6秒前
Loooong发布了新的文献求助10
6秒前
Jay完成签到,获得积分10
7秒前
科研发布了新的文献求助10
7秒前
7秒前
壮观听芹完成签到,获得积分10
7秒前
芜湖完成签到,获得积分10
7秒前
善良绿柳发布了新的文献求助10
7秒前
shi hui应助Maria采纳,获得10
8秒前
2233完成签到,获得积分10
8秒前
耳朵儿歌发布了新的文献求助10
8秒前
shi hui应助派大星采纳,获得10
9秒前
搬砖小羊完成签到,获得积分10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5257018
求助须知:如何正确求助?哪些是违规求助? 4419147
关于积分的说明 13754974
捐赠科研通 4292341
什么是DOI,文献DOI怎么找? 2355479
邀请新用户注册赠送积分活动 1351865
关于科研通互助平台的介绍 1312669