Neurophysiological effects of frequency, length, phonological neighborhood density, and iconicity on sign recognition

象似性 400奈米 手语 符号(数学) 语言学 美国手语 词汇判断任务 计算机科学 心理学 语音识别 事件相关电位 认知 数学 数学分析 哲学 神经科学
作者
Xiaohong Zhang,Hong-Wen Cao,Hong Li
出处
期刊:Neuroreport [Lippincott Williams & Wilkins]
卷期号:34 (17): 817-824
标识
DOI:10.1097/wnr.0000000000001959
摘要

Current theories on lexical recognition are mostly based on studies from spoken languages or their written forms. Much less is known about the process of lexical recognition in sign languages. This study aims to examine the neural correlates of sign recognition by investigating the effects of lexical frequency, length, phonological neighborhood density, and iconicity during Chinese Sign Language comprehension. Twenty-two deaf signers viewed a set of sign videos that varied in the 4 lexical properties and decided if they referred to animals, while event-related potential responses were recorded. Data were analyzed through linear mixed-effects models with the lexical variables treated as continuous measures. The results showed that frequency modulated ERP amplitude as early as around 200 ms and in the late N400 time frame. Sign length invoked effects throughout the process, starting from 200 ms and pertaining to the last epoch. Neighborhood density effects were also observed early around 200 ms and later on the N400 and late positive complex (LPC). Iconicity produced robust effects on the N400 and LPC amplitude. Lexical frequency, length, and neighborhood density influence the neural dynamics of sign recognition in a similar way as to spoken words. Iconicity can confer a processing advantage due to closer form-meaning mappings. The results indicate that lexical recognition engages some mechanisms that are universal across the signed and spoken modality, but it can also be regulated by modality-specific properties such as the prevalent iconicity in sign languages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈哈的一笑完成签到 ,获得积分10
5秒前
6秒前
小宁完成签到,获得积分20
6秒前
科研通AI5应助tt采纳,获得10
10秒前
elous发布了新的文献求助10
10秒前
14秒前
jenningseastera应助陆又柔采纳,获得10
15秒前
JamesPei应助wss123456采纳,获得10
17秒前
科研刘完成签到 ,获得积分10
19秒前
21秒前
24秒前
25秒前
吴可之发布了新的文献求助10
30秒前
33秒前
翊然甜周完成签到,获得积分10
34秒前
mmy完成签到 ,获得积分10
35秒前
吴可之完成签到,获得积分10
35秒前
十个qin天发布了新的文献求助10
39秒前
临界给TrinhTran2001的求助进行了留言
43秒前
Ava应助elous采纳,获得10
45秒前
46秒前
思源应助十个qin天采纳,获得10
47秒前
小k完成签到 ,获得积分10
49秒前
难过的曼柔完成签到,获得积分20
52秒前
灰化土发布了新的文献求助10
52秒前
59秒前
59秒前
小蘑菇应助科研通管家采纳,获得10
1分钟前
bc应助科研通管家采纳,获得30
1分钟前
jason发布了新的文献求助10
1分钟前
热爱科研的小白鼠完成签到,获得积分20
1分钟前
000完成签到,获得积分10
1分钟前
1分钟前
1分钟前
简单刺猬完成签到,获得积分10
1分钟前
1分钟前
玄音完成签到,获得积分10
1分钟前
蓝桥发布了新的文献求助10
1分钟前
lcylidong完成签到 ,获得积分10
1分钟前
后周寒生完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778595
求助须知:如何正确求助?哪些是违规求助? 3324214
关于积分的说明 10217326
捐赠科研通 3039397
什么是DOI,文献DOI怎么找? 1668059
邀请新用户注册赠送积分活动 798482
科研通“疑难数据库(出版商)”最低求助积分说明 758385