亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-objective multi-fidelity optimisation for position-constrained human-robot collaborative disassembly planning

再制造 忠诚 机器人 计算机科学 整数规划 数学优化 职位(财务) 运动规划 工作站 比例(比率) 直线(几何图形) 运筹学 工业工程 模拟 工程类 算法 人工智能 数学 制造工程 量子力学 电信 操作系统 物理 经济 财务 几何学
作者
Yilin Fang,Zhiyao Li,Siwei Wang,Xinwei Lu
出处
期刊:International Journal of Production Research [Taylor & Francis]
卷期号:: 1-18 被引量:5
标识
DOI:10.1080/00207543.2023.2251064
摘要

AbstractHuman-robot collaborative disassembly lines are widely used by remanufacturing companies to disassemble end-of-life (EOL) products. When disassembling large-sized EOL products, each workstation on a disassembly line is generally divided into multiple operating positions, so that different operators can disassemble the same product at their respective positions at the same time, thereby greatly improving efficiency. This paper focuses on a position-constrained human-robot collaborative disassembly planning (PC-HRCDP) problem for the above-mentioned lines, including three subproblems of disassembly sequence planning, disassembly line balancing and robot path planning. A multi-objective mixed integer programming model for PC-HRCDP is developed to solve small-scale instances. Furthermore, a multi-objective multi-fidelity optimisation (MO-MFO) algorithm is proposed to solve large-scale instances. Comprehensive experiments are conducted based on 10 problem instances generated in this study. Experimental results show that the proposed MO-MFO is better than a high-fidelity optimisation algorithm in terms of running time. In addition, benefiting from the strategy of MO-MFO to allocate the limited high-fidelity computational budget to solutions in the two stages of multi-objective optimisation and optimal sampling, MO-MFO is significantly better than the existing representative multi-fidelity optimisation algorithms in terms of the hyper-volume and the inverted generational distance.KEYWORDS: Disassembly linedisassembly planninghuman-robot collaborationmulti-fidelity optimisationmulti-objective optimisation Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementThe data used to support the findings of this study are available from the corresponding author upon request or from Mendeley Data, V2, doi: 10.17632/c5k8d775bp.2.Additional informationFundingThis work was supported by the National Natural Science Foundation of China under Grant 52075402.Notes on contributorsYilin FangYilin Fang received the Ph.D. degree in communication engineering from the Wuhan University of Technology, Wuhan, China, in 2011. In 2017, he was a visiting scholar with the School of Engineering, University of Birmingham, U.K. He is currently a professor at the Wuhan University of Technology, China. His research interests include disassembly planning, multi-objective optimisation and evolutionary algorithms.Zhiyao LiZhiyao Li is currently pursuing the Ph.D. degree with the Wuhan University of Technology. His research interests include disassembly planning and multi-objective optimisation.Siwei WangSiwei Wang received the bachelor’s degree in communication engineering from Wuhan University of Technology, Wuhan, China, in 2020. She is currently pursuing the master’s degree with the Wuhan University of Technology. Her research is principally on multi-objective optimisation.Xinwei LuXinwei Lu received the bachelor’s degree in telecommunications engineering from Wuhan University of Technology, Wuhan, China, in 2021. She is currently pursuing the master’s degree with the Wuhan University of Technology. Her research interests include robotic disassembly and evolutionary computation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
过氧化氢发布了新的文献求助10
5秒前
37秒前
52秒前
domingo完成签到,获得积分10
1分钟前
Lexi完成签到 ,获得积分10
2分钟前
2分钟前
小马甲应助科研通管家采纳,获得10
2分钟前
11111完成签到,获得积分20
2分钟前
2分钟前
11111发布了新的文献求助10
2分钟前
2分钟前
桐桐应助于慧中采纳,获得10
2分钟前
JrPaleo101完成签到,获得积分10
2分钟前
3分钟前
于慧中发布了新的文献求助10
3分钟前
XiYang完成签到,获得积分10
3分钟前
冉亦完成签到,获得积分10
4分钟前
顾矜应助我要发nature采纳,获得10
4分钟前
斯文败类应助ma采纳,获得10
4分钟前
5分钟前
ma发布了新的文献求助10
5分钟前
shw完成签到,获得积分10
5分钟前
obedVL完成签到,获得积分10
5分钟前
稳重的雨灵完成签到,获得积分10
5分钟前
5分钟前
在水一方应助可靠的寒风采纳,获得10
5分钟前
5分钟前
6分钟前
6分钟前
6分钟前
科研通AI2S应助稳重的雨灵采纳,获得10
6分钟前
6分钟前
6分钟前
我要发nature完成签到,获得积分10
6分钟前
Hello应助我要发nature采纳,获得10
6分钟前
梁昊完成签到,获得积分10
6分钟前
彭于晏应助科研通管家采纳,获得10
6分钟前
顾矜应助科研通管家采纳,获得10
6分钟前
梁昊发布了新的文献求助10
6分钟前
欣喜眼神发布了新的文献求助10
7分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840784
求助须知:如何正确求助?哪些是违规求助? 3382680
关于积分的说明 10526315
捐赠科研通 3102551
什么是DOI,文献DOI怎么找? 1708888
邀请新用户注册赠送积分活动 822765
科研通“疑难数据库(出版商)”最低求助积分说明 773575