Intelligent detection on construction project contract missing clauses based on deep learning and NLP

计算机科学 施工合同 分类 人工智能 深度学习 自然语言处理 合同管理 业务 营销
作者
Hong Zhou,Binwei Gao,Shilong Tang,Bing Li,Shuyu Wang
出处
期刊:Engineering, Construction and Architectural Management [Emerald Publishing Limited]
被引量:15
标识
DOI:10.1108/ecam-02-2023-0172
摘要

Purpose The number of construction dispute cases has maintained a high growth trend in recent years. The effective exploration and management of construction contract risk can directly promote the overall performance of the project life cycle. The miss of clauses may result in a failure to match with standard contracts. If the contract, modified by the owner, omits key clauses, potential disputes may lead to contractors paying substantial compensation. Therefore, the identification of construction project contract missing clauses has heavily relied on the manual review technique, which is inefficient and highly restricted by personnel experience. The existing intelligent means only work for the contract query and storage. It is urgent to raise the level of intelligence for contract clause management. Therefore, this paper aims to propose an intelligent method to detect construction project contract missing clauses based on Natural Language Processing (NLP) and deep learning technology. Design/methodology/approach A complete classification scheme of contract clauses is designed based on NLP. First, construction contract texts are pre-processed and converted from unstructured natural language into structured digital vector form. Following the initial categorization, a multi-label classification of long text construction contract clauses is designed to preliminary identify whether the clause labels are missing. After the multi-label clause missing detection, the authors implement a clause similarity algorithm by creatively integrating the image detection thought, MatchPyramid model, with BERT to identify missing substantial content in the contract clauses. Findings 1,322 construction project contracts were tested. Results showed that the accuracy of multi-label classification could reach 93%, the accuracy of similarity matching can reach 83%, and the recall rate and F1 mean of both can reach more than 0.7. The experimental results verify the feasibility of intelligently detecting contract risk through the NLP-based method to some extent. Originality/value NLP is adept at recognizing textual content and has shown promising results in some contract processing applications. However, the mostly used approaches of its utilization for risk detection in construction contract clauses predominantly are rule-based, which encounter challenges when handling intricate and lengthy engineering contracts. This paper introduces an NLP technique based on deep learning which reduces manual intervention and can autonomously identify and tag types of contractual deficiencies, aligning with the evolving complexities anticipated in future construction contracts. Moreover, this method achieves the recognition of extended contract clause texts. Ultimately, this approach boasts versatility; users simply need to adjust parameters such as segmentation based on language categories to detect omissions in contract clauses of diverse languages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
找文献的小白完成签到,获得积分10
4秒前
4秒前
mzc完成签到,获得积分20
5秒前
5秒前
7秒前
7秒前
8秒前
研友_nvGy2Z发布了新的文献求助10
8秒前
larychen发布了新的文献求助10
8秒前
活力的颜发布了新的文献求助10
10秒前
12秒前
念神珠恋玥完成签到,获得积分10
12秒前
任匠发布了新的文献求助10
12秒前
15秒前
17秒前
19秒前
19秒前
zfm发布了新的文献求助10
20秒前
小糊涂仙儿完成签到 ,获得积分10
21秒前
21秒前
张小星发布了新的文献求助10
22秒前
热电CAT完成签到,获得积分10
23秒前
24秒前
独孤幻月96应助YUN采纳,获得10
24秒前
As故完成签到,获得积分10
24秒前
英俊的铭应助巧克力手印采纳,获得10
25秒前
张小星完成签到,获得积分10
27秒前
GTRK完成签到 ,获得积分10
28秒前
繁荣的雨南完成签到 ,获得积分10
29秒前
安静海露完成签到,获得积分10
29秒前
Maggie123发布了新的文献求助40
29秒前
32秒前
33秒前
35秒前
BOHR应助软甜纱雾采纳,获得30
36秒前
37秒前
tt发布了新的文献求助10
38秒前
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Progress and Regression 400
A review of Order Plesiosauria, and the description of a new, opalised pliosauroid, Leptocleidus demoscyllus, from the early cretaceous of Coober Pedy, South Australia 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4812397
求助须知:如何正确求助?哪些是违规求助? 4125118
关于积分的说明 12764375
捐赠科研通 3862071
什么是DOI,文献DOI怎么找? 2125736
邀请新用户注册赠送积分活动 1147312
关于科研通互助平台的介绍 1041082