Dual Single-Atomic Co–Mn Sites in Metal–Organic-Framework-Derived N-Doped Nanoporous Carbon for Electrochemical Oxygen Reduction

电化学 过电位 催化作用 沸石咪唑盐骨架 金属有机骨架 密度泛函理论 电解质 吸附 材料科学 纳米孔 咪唑酯 无机化学 质子交换膜燃料电池 化学 化学工程 物理化学 纳米技术 计算化学 电极 有机化学 工程类
作者
Gargi Dey,Rajkumar Jana,Shadab Saifi,Ravi Kumar,D. Bhattacharyya,Ayan Datta,Amit Sinha,A. Aijaz
出处
期刊:ACS Nano [American Chemical Society]
卷期号:17 (19): 19155-19167 被引量:36
标识
DOI:10.1021/acsnano.3c05379
摘要

Synthesizing dual single-atom catalysts (DSACs) with atomically isolated metal pairs is a challenging task but can be an effective way to enhance the performance for electrochemical oxygen reduction reaction (ORR). Herein, well-defined DSACs of Co-Mn, stabilized in N-doped porous carbon polyhedra (named CoMn/NC), are synthesized using high-temperature pyrolysis of a Co/Mn-doped zeolitic imidazolate framework. The atomically isolated Co-Mn site in CoMn/NC is recognized by combining microscopic as well as spectroscopic techniques. CoMn/NC exhibited excellent ORR activities in alkaline (E1/2 = 0.89 V) as well as in acidic (E1/2 = 0.82 V) electrolytes with long-term durability and enhanced methanol tolerance. Density functional theory (DFT) suggests that the Co-Mn site is efficiently activating the O-O bond via bridging adsorption, decisive for the 4e- oxygen reduction process. Though the Co-Mn sites favor O2 activation via the dissociative ORR mechanism, stronger adsorption of the intermediates in the dissociative path degrades the overall ORR activity. Our DFT studies conclude that the ORR on an Co-Mn site mainly occurs via bridging side-on O2 adsorption following thermodynamically and kinetically favorable associative mechanistic pathways with a lower overpotential and activation barrier. CoMn/NC performed excellently as a cathode in a proton exchange membrane (PEM) fuel cell and rechargeable Zn-air battery with high peak power densities of 970 and 176 mW cm-2, respectively. This work provides the guidelines for the rational design and synthesis of nonprecious DSACs for enhancing the ORR activity as well as the robustness of DSACs and suggests a design of multifunctional robust electrocatalysts for energy storage and conversion devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助柠檬酸采纳,获得10
刚刚
Ulysses完成签到,获得积分10
刚刚
11秒前
12秒前
柠檬酸发布了新的文献求助10
15秒前
CR7完成签到,获得积分10
15秒前
15秒前
苏su完成签到,获得积分10
16秒前
研友_Lw7MKL完成签到,获得积分10
17秒前
春酒4完成签到,获得积分10
17秒前
何阳完成签到,获得积分0
23秒前
研友_yLpQrn完成签到,获得积分10
23秒前
24秒前
24秒前
柠檬酸完成签到,获得积分10
24秒前
黄小北发布了新的文献求助30
25秒前
忧伤的慕梅完成签到 ,获得积分10
28秒前
禾苗完成签到 ,获得积分10
28秒前
29秒前
成太发布了新的文献求助10
29秒前
36秒前
独特的板凳完成签到,获得积分10
38秒前
科研通AI5应助科研通管家采纳,获得10
40秒前
小蘑菇应助科研通管家采纳,获得10
40秒前
冰魂应助科研通管家采纳,获得10
40秒前
hyshen完成签到,获得积分10
40秒前
华仔应助科研通管家采纳,获得10
40秒前
英姑应助科研通管家采纳,获得10
41秒前
JamesPei应助科研通管家采纳,获得10
41秒前
41秒前
共享精神应助科研通管家采纳,获得10
41秒前
41秒前
41秒前
44秒前
黄小北发布了新的文献求助50
45秒前
46秒前
青衫发布了新的文献求助10
47秒前
minjeong完成签到,获得积分10
48秒前
正直凌文完成签到 ,获得积分10
51秒前
真实的火车完成签到,获得积分10
53秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778404
求助须知:如何正确求助?哪些是违规求助? 3324131
关于积分的说明 10217172
捐赠科研通 3039355
什么是DOI,文献DOI怎么找? 1667977
邀请新用户注册赠送积分活动 798463
科研通“疑难数据库(出版商)”最低求助积分说明 758385