纳秒
介质阻挡放电
材料科学
局部放电
等离子体
声学
分析化学(期刊)
光电子学
电介质
激光器
电气工程
电压
光学
化学
工程类
物理
色谱法
量子力学
作者
Xi Zhu,Xiuhan Guan,Zhaorui Luo,Liyan Wang,Luyi Dai,Zexuan Wu,Jiajie Fan,Xinglei Cui,Shakeel Akram,Zhi Fang
标识
DOI:10.1088/1361-6463/ad396d
摘要
Abstract This study introduces a novel meter-scale dielectric barrier discharge (m-DBD) reactor designed to generate large-scale, low-temperature nanosecond pulsed discharge plasma. By employing a modularized gas path, this reactor enables a comprehensive analysis of discharge patterns and uniformity using multi-dimensional discharge parameters. Simulation results reveal optimal gas distribution with ten gas holes in the variable plate and a 40 mm slit depth in the main reactor. Besides, a diagnosis method based on electro-acoustic-spectrum-image (E-A-S-I) parameters is developed to evaluate nanosecond pulsed m-DBD discharge states. It is found that the discharge states are closely related to the consistency of segmental discharge currents, the fluctuation of acoustic signals and the distribution of active particles. Machine learning methods are established to realize the diagnosis of m-DBD discharge pattern and uniformity by E-A-S-I parameters, where the optimized BPNN has a best recognition accuracy of 97.5%. Furthermore, leveraging nanosecond pulse power in Ar/m-DBD enables stable 1120 × 70 mm 2 discharge, uniformly enhancing hydrophobicity of large-scale materials from a 67° to 122° water contact angle with maximal fluctuations below 7%. The modularized m-DBD reactor and its intelligent analysis based on multi-dimensional parameter provide a crucial foundation for advancing large-scale nanosecond pulsed plasma and their industrial applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI