Multi-strategy improved artificial rabbit optimization algorithm based on fusion centroid and elite guidance mechanisms

质心 融合 算法 计算机科学 人工智能 数学优化 数学 哲学 语言学
作者
Hefan Huang,Rui Wu,Haisong Huang,Jianan Wei,Zhenggong Han,Wen Long,Yage Yuan
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:425: 116915-116915
标识
DOI:10.1016/j.cma.2024.116915
摘要

The Artificial Rabbit Optimization (ARO) algorithm has been proposed as an effective metaheuristic optimization approach in recent years. However, the ARO algorithm exhibits shortcomings in certain cases, including inefficient search, slow convergence, and vulnerability to local optima. To address these issues, this paper introduces a multi-strategy improved Artificial Rabbit Optimization (IARO) algorithm. Firstly, in the enhanced search strategy, we propose integrating the centroid guidance mechanism and elite guidance mechanism with the greedy strategy to update the position during the exploration phase. Additionally, the Levy flight strategy integrated with self-learning, is employed to update the position during the development phase to improve convergence speed and prevent falling into local optima. Secondly, the algorithm incorporates a per-dimension mirror boundary control strategy to map individuals exceeding the boundary back within the boundary back inside the boundary. This boundary control strategy ensures the algorithm operates within bounds and enhances convergence speed. Finally, within the survival of the fittest strategy, an adaptive factor is introduced to gradually enhance the population's overall adaptability. This factor regulates the balance between exploration and exploitation, allowing the algorithm to fully explore the search space and improve its robustness. To substantiate the effectiveness of the proposed IARO algorithm, a rigorous and systematic verification analysis was undertaken. Comparative experiments for qualitative and quantitative analysis were conducted on three benchmark test sets, namely CEC2017, CEC2020, and CEC2022. The analysis results, including the Wilcoxon rank-sum test, consistently demonstrates that this improved algorithm outperforms ARO and other state-of-the-art optimization algorithms comprehensively. Finally, the feasibility of the IARO algorithm has been verified in seven classical constrained engineering problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤恳马里奥应助爱狗先森采纳,获得10
刚刚
1秒前
善良青筠完成签到,获得积分10
1秒前
Ava应助哈哈哈哈哈采纳,获得10
1秒前
爆米花应助Joy采纳,获得30
3秒前
海盗船长完成签到,获得积分10
3秒前
4秒前
4秒前
gg发布了新的文献求助10
5秒前
斯文败类应助童半兰采纳,获得10
5秒前
程程程发布了新的文献求助10
6秒前
7秒前
巴拉巴拉完成签到,获得积分20
7秒前
宇文从安发布了新的文献求助10
8秒前
8秒前
ala完成签到,获得积分10
9秒前
11111发布了新的文献求助10
9秒前
希希完成签到 ,获得积分20
9秒前
vsoar完成签到,获得积分10
11秒前
精波士完成签到,获得积分10
11秒前
慕青应助雪原白鹿采纳,获得10
11秒前
zm发布了新的文献求助10
11秒前
慢慢发布了新的文献求助10
12秒前
12秒前
14秒前
啊哈哈完成签到,获得积分10
15秒前
16秒前
18秒前
奋斗的蜗牛应助慢慢采纳,获得10
18秒前
姚夏完成签到 ,获得积分10
19秒前
思源应助yll采纳,获得10
19秒前
机灵镜子发布了新的文献求助10
20秒前
20秒前
可爱的咖啡完成签到,获得积分20
20秒前
DXDXJX完成签到,获得积分10
23秒前
jiujiu发布了新的文献求助10
23秒前
27秒前
29秒前
树树发布了新的文献求助10
29秒前
勤奋雨完成签到,获得积分10
30秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783709
求助须知:如何正确求助?哪些是违规求助? 3328883
关于积分的说明 10239058
捐赠科研通 3044346
什么是DOI,文献DOI怎么找? 1670946
邀请新用户注册赠送积分活动 799982
科研通“疑难数据库(出版商)”最低求助积分说明 759171