亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Colorectal Coordinate-Driven Method for Colorectum and Colorectal Cancer Segmentation in Conventional CT Scans

结直肠癌 分割 体素 磁共振成像 医学 杠杆(统计) 计算机视觉 计算机科学 人工智能 放射科 癌症 内科学
作者
Lisha Yao,Yingda Xia,Zhihong Chen,Suyun Li,Jiawen Yao,Dakai Jin,Yanting Liang,Jiatai Lin,Bingchao Zhao,Chu Han,Le Lü,Ling Zhang,Zaiyi Liu,Xin Chen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:7
标识
DOI:10.1109/tnnls.2024.3386610
摘要

Automated colorectal cancer (CRC) segmentation in medical imaging is the key to achieving automation of CRC detection, staging, and treatment response monitoring. Compared with magnetic resonance imaging (MRI) and computed tomography colonography (CTC), conventional computed tomography (CT) has enormous potential because of its broad implementation, superiority for the hollow viscera (colon), and convenience without needing bowel preparation. However, the segmentation of CRC in conventional CT is more challenging due to the difficulties presenting with the unprepared bowel, such as distinguishing the colorectum from other structures with similar appearance and distinguishing the CRC from the contents of the colorectum. To tackle these challenges, we introduce DeepCRC-SL, the first automated segmentation algorithm for CRC and colorectum in conventional contrast-enhanced CT scans. We propose a topology-aware deep learning-based approach, which builds a novel 1-D colorectal coordinate system and encodes each voxel of the colorectum with a relative position along the coordinate system. We then induce an auxiliary regression task to predict the colorectal coordinate value of each voxel, aiming to integrate global topology into the segmentation network and thus improve the colorectum's continuity. Self-attention layers are utilized to capture global contexts for the coordinate regression task and enhance the ability to differentiate CRC and colorectum tissues. Moreover, a coordinate-driven self-learning (SL) strategy is introduced to leverage a large amount of unlabeled data to improve segmentation performance. We validate the proposed approach on a dataset including 227 labeled and 585 unlabeled CRC cases by fivefold cross-validation. Experimental results demonstrate that our method outperforms some recent related segmentation methods and achieves the segmentation accuracy in DSC for CRC of 0.669 and colorectum of 0.892, reaching to the performance (at 0.639 and 0.890, respectively) of a medical resident with two years of specialized CRC imaging fellowship.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
12秒前
automan发布了新的文献求助10
25秒前
风汐5423完成签到 ,获得积分10
35秒前
科研通AI2S应助科研通管家采纳,获得30
41秒前
Virtual应助科研通管家采纳,获得20
41秒前
automan完成签到,获得积分10
47秒前
稻子完成签到 ,获得积分10
1分钟前
笨笨山芙完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助20
2分钟前
研友_8Y2DXL完成签到,获得积分10
2分钟前
null应助科研通管家采纳,获得10
2分钟前
ZYP应助科研通管家采纳,获得10
2分钟前
Virtual应助科研通管家采纳,获得20
2分钟前
null应助科研通管家采纳,获得10
2分钟前
3分钟前
封之玉发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
英姑应助玉米之路采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
Nina应助科研通管家采纳,获得10
4分钟前
null应助科研通管家采纳,获得10
4分钟前
PeterLin应助科研通管家采纳,获得30
4分钟前
null应助科研通管家采纳,获得10
4分钟前
Nina应助科研通管家采纳,获得10
4分钟前
4分钟前
玉米之路发布了新的文献求助10
4分钟前
封之玉完成签到,获得积分10
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
xun完成签到,获得积分10
6分钟前
null应助科研通管家采纳,获得10
6分钟前
Nina应助科研通管家采纳,获得10
6分钟前
星辰大海应助科研通管家采纳,获得10
6分钟前
科研通AI5应助科研通管家采纳,获得10
6分钟前
Nina应助科研通管家采纳,获得10
6分钟前
Akim应助科研通管家采纳,获得10
6分钟前
null应助科研通管家采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
The Start of the Start: Entrepreneurial Opportunity Identification and Evaluation 400
Simulation of High-NA EUV Lithography 400
Metals, Minerals, and Society 400
International socialism & Australian labour : the Left in Australia, 1919-1939 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4304463
求助须知:如何正确求助?哪些是违规求助? 3827462
关于积分的说明 11979624
捐赠科研通 3468474
什么是DOI,文献DOI怎么找? 1902228
邀请新用户注册赠送积分活动 949825
科研通“疑难数据库(出版商)”最低求助积分说明 851804