清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Colorectal Coordinate-Driven Method for Colorectum and Colorectal Cancer Segmentation in Conventional CT Scans

结直肠癌 分割 体素 磁共振成像 医学 杠杆(统计) 计算机视觉 计算机科学 人工智能 放射科 癌症 内科学
作者
Lisha Yao,Yingda Xia,Zhihong Chen,Suyun Li,Jiawen Yao,Dakai Jin,Yanting Liang,Jiatai Lin,Bingchao Zhao,Chu Han,Le Lü,Ling Zhang,Zaiyi Liu,Xin Chen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (4): 7395-7406 被引量:10
标识
DOI:10.1109/tnnls.2024.3386610
摘要

Automated colorectal cancer (CRC) segmentation in medical imaging is the key to achieving automation of CRC detection, staging, and treatment response monitoring. Compared with magnetic resonance imaging (MRI) and computed tomography colonography (CTC), conventional computed tomography (CT) has enormous potential because of its broad implementation, superiority for the hollow viscera (colon), and convenience without needing bowel preparation. However, the segmentation of CRC in conventional CT is more challenging due to the difficulties presenting with the unprepared bowel, such as distinguishing the colorectum from other structures with similar appearance and distinguishing the CRC from the contents of the colorectum. To tackle these challenges, we introduce DeepCRC-SL, the first automated segmentation algorithm for CRC and colorectum in conventional contrast-enhanced CT scans. We propose a topology-aware deep learning-based approach, which builds a novel 1-D colorectal coordinate system and encodes each voxel of the colorectum with a relative position along the coordinate system. We then induce an auxiliary regression task to predict the colorectal coordinate value of each voxel, aiming to integrate global topology into the segmentation network and thus improve the colorectum's continuity. Self-attention layers are utilized to capture global contexts for the coordinate regression task and enhance the ability to differentiate CRC and colorectum tissues. Moreover, a coordinate-driven self-learning (SL) strategy is introduced to leverage a large amount of unlabeled data to improve segmentation performance. We validate the proposed approach on a dataset including 227 labeled and 585 unlabeled CRC cases by fivefold cross-validation. Experimental results demonstrate that our method outperforms some recent related segmentation methods and achieves the segmentation accuracy in DSC for CRC of 0.669 and colorectum of 0.892, reaching to the performance (at 0.639 and 0.890, respectively) of a medical resident with two years of specialized CRC imaging fellowship.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到 ,获得积分10
6秒前
10秒前
轻松寄风发布了新的文献求助10
15秒前
的卢小马完成签到 ,获得积分10
28秒前
寡核苷酸小白完成签到 ,获得积分10
45秒前
nojego完成签到,获得积分10
48秒前
动听的秋白完成签到 ,获得积分10
59秒前
Jasmineyfz完成签到 ,获得积分10
59秒前
Arthur完成签到 ,获得积分10
1分钟前
yushiolo完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
林克完成签到,获得积分10
1分钟前
hoy完成签到 ,获得积分10
1分钟前
qingxinhuo完成签到 ,获得积分10
1分钟前
Nancy完成签到 ,获得积分10
1分钟前
lixueping完成签到,获得积分10
1分钟前
沉沉完成签到 ,获得积分0
2分钟前
allrubbish完成签到,获得积分10
2分钟前
大雁完成签到 ,获得积分0
2分钟前
dx完成签到,获得积分10
2分钟前
debu9完成签到,获得积分10
2分钟前
Momo完成签到 ,获得积分10
3分钟前
3分钟前
波里舞完成签到 ,获得积分10
3分钟前
Alicia完成签到 ,获得积分10
3分钟前
范白容完成签到 ,获得积分0
3分钟前
ys1008完成签到,获得积分10
3分钟前
喜喜完成签到,获得积分10
3分钟前
BowieHuang完成签到,获得积分0
3分钟前
675完成签到,获得积分10
3分钟前
prrrratt完成签到,获得积分10
3分钟前
zwzw完成签到,获得积分10
3分钟前
CGBIO完成签到,获得积分10
3分钟前
啪嗒大白球完成签到,获得积分10
3分钟前
真的OK完成签到,获得积分0
3分钟前
yzz完成签到,获得积分10
3分钟前
cityhunter7777完成签到,获得积分10
3分钟前
Temperature完成签到,获得积分10
3分钟前
洋芋饭饭完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5635405
求助须知:如何正确求助?哪些是违规求助? 4735897
关于积分的说明 14990231
捐赠科研通 4793147
什么是DOI,文献DOI怎么找? 2560284
邀请新用户注册赠送积分活动 1520329
关于科研通互助平台的介绍 1480569