亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Colorectal Coordinate-Driven Method for Colorectum and Colorectal Cancer Segmentation in Conventional CT Scans

结直肠癌 分割 体素 磁共振成像 医学 杠杆(统计) 计算机视觉 计算机科学 人工智能 放射科 癌症 内科学
作者
Lisha Yao,Yingda Xia,Zhihong Chen,Suyun Li,Jiawen Yao,Dakai Jin,Yanting Liang,Jiatai Lin,Bingchao Zhao,Chu Han,Le Lü,Ling Zhang,Zaiyi Liu,Xin Chen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:5
标识
DOI:10.1109/tnnls.2024.3386610
摘要

Automated colorectal cancer (CRC) segmentation in medical imaging is the key to achieving automation of CRC detection, staging, and treatment response monitoring. Compared with magnetic resonance imaging (MRI) and computed tomography colonography (CTC), conventional computed tomography (CT) has enormous potential because of its broad implementation, superiority for the hollow viscera (colon), and convenience without needing bowel preparation. However, the segmentation of CRC in conventional CT is more challenging due to the difficulties presenting with the unprepared bowel, such as distinguishing the colorectum from other structures with similar appearance and distinguishing the CRC from the contents of the colorectum. To tackle these challenges, we introduce DeepCRC-SL, the first automated segmentation algorithm for CRC and colorectum in conventional contrast-enhanced CT scans. We propose a topology-aware deep learning-based approach, which builds a novel 1-D colorectal coordinate system and encodes each voxel of the colorectum with a relative position along the coordinate system. We then induce an auxiliary regression task to predict the colorectal coordinate value of each voxel, aiming to integrate global topology into the segmentation network and thus improve the colorectum's continuity. Self-attention layers are utilized to capture global contexts for the coordinate regression task and enhance the ability to differentiate CRC and colorectum tissues. Moreover, a coordinate-driven self-learning (SL) strategy is introduced to leverage a large amount of unlabeled data to improve segmentation performance. We validate the proposed approach on a dataset including 227 labeled and 585 unlabeled CRC cases by fivefold cross-validation. Experimental results demonstrate that our method outperforms some recent related segmentation methods and achieves the segmentation accuracy in DSC for CRC of 0.669 and colorectum of 0.892, reaching to the performance (at 0.639 and 0.890, respectively) of a medical resident with two years of specialized CRC imaging fellowship.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kenshin完成签到,获得积分10
5秒前
科研通AI5应助大雄先生采纳,获得10
9秒前
香蕉觅云应助Glufo采纳,获得10
15秒前
愉快的犀牛完成签到 ,获得积分10
16秒前
20秒前
量子星尘发布了新的文献求助10
23秒前
大雄先生发布了新的文献求助10
27秒前
28秒前
29秒前
DJHKFD发布了新的文献求助10
35秒前
善学以致用应助DJHKFD采纳,获得10
42秒前
开心蹇完成签到 ,获得积分10
45秒前
量子星尘发布了新的文献求助10
55秒前
Jasper应助大雄先生采纳,获得10
1分钟前
危机的囧发布了新的文献求助30
1分钟前
大雄先生完成签到,获得积分10
1分钟前
箜箜完成签到,获得积分10
1分钟前
1分钟前
DJHKFD发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
呀呀呀完成签到,获得积分10
1分钟前
潇洒的奇异果完成签到,获得积分10
1分钟前
wzq完成签到 ,获得积分10
1分钟前
qq发布了新的文献求助10
1分钟前
bkagyin应助LONG采纳,获得10
1分钟前
xiaokang123应助科研通管家采纳,获得10
1分钟前
jyy应助科研通管家采纳,获得10
1分钟前
xiaokang123应助科研通管家采纳,获得10
1分钟前
Hello应助科研通管家采纳,获得10
1分钟前
xiaokang123应助科研通管家采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
无花果应助DJHKFD采纳,获得10
1分钟前
1分钟前
Jane完成签到,获得积分10
1分钟前
Glufo发布了新的文献求助10
2分钟前
2分钟前
2分钟前
两袖清风完成签到 ,获得积分10
2分钟前
Susan发布了新的文献求助10
2分钟前
HeYan完成签到,获得积分10
2分钟前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Synthesis of 21-Thioalkanoic Acids of Corticosteroids 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Applied Survey Data Analysis (第三版, 2025) 850
Structural Equation Modeling of Multiple Rater Data 700
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3885738
求助须知:如何正确求助?哪些是违规求助? 3427844
关于积分的说明 10757026
捐赠科研通 3152717
什么是DOI,文献DOI怎么找? 1740540
邀请新用户注册赠送积分活动 840289
科研通“疑难数据库(出版商)”最低求助积分说明 785280