膜
材料科学
化学物理
生物物理学
化学工程
纳米技术
化学
工程类
生物
生物化学
作者
Tobias U. Schülli,Edwin Dollekamp,Z Ismaili,Noman Nawaz,T. Januel,Tadesse Billo,P. Brumund,H. Djazouli,Steven Leake,Maciej Jankowski,V Reita,Mabel Rodríguez,Laurent André,A. Aliane,Y.-M. Le Vaillant
标识
DOI:10.1016/j.mtadv.2024.100489
摘要
Imposing and controlling strain in materials such as semiconductors or ferroelectrics is a promising way to obtain new or enhance existing properties. Although the field of strain engineering has seen a rapid expansion over the last two decades, straining semiconductor membranes over large areas remains a challenge. A generic way of tuning strain and hence band structure and electric or magnetic properties of any crystalline material can be obtained by compression of a composite structure involving poorly compressible elastomers. Mechanically similar to the principle of a hydraulic press, this work proposes a device and describes analytically a methodology to easily strain macroscopic membranes up to unprecedented values. Using in-situ X-ray diffraction and Raman spectroscopy, we tuned the biaxial strain in silicon membranes up to a value of 2.1 %, paving the way for new studies in the field of strain related physics, from semiconductors to perovskite oxide multiferroics.
科研通智能强力驱动
Strongly Powered by AbleSci AI