Research on the Low-Temperature Impact Toughness of a New 100-mm Ultra-Thick Offshore Steel Fabricated Using the Narrow-Gap Laser Wire Filling Welding Process

材料科学 焊接 电子背散射衍射 复合材料 热影响区 冶金 激光束焊接 韧性 接头(建筑物) 微观结构 结构工程 工程类
作者
Zhong-lin Hou,Haiquan Guo,Jiaji Wang,Zeng-Yang Huang,Ze-An Wang,Disheng Fang,Jun Qiao
出处
期刊:Materials [MDPI AG]
卷期号:17 (6): 1363-1363 被引量:2
标识
DOI:10.3390/ma17061363
摘要

Ultra-thick offshore steel, known for its high strength, high toughness, and corrosion resistance, is commonly used in marine platforms and ship components. However, when offshore steel is in service for an extended period under conditions of high pressure, extreme cold, and high-frequency impact loads, the weld joints are prone to fatigue failure or even fractures. Addressing these issues, this study designed a narrow-gap laser wire filling welding process and successfully welded a 100-mm new type of ultra-thick offshore steel. Using finite element simulation, EBSD testing, SEM analysis, and impact experiments, this study investigates the weld’s microstructure, impact toughness, and fracture mechanisms. The research found that at −80 °C, the welded joint exhibited good impact toughness (>80 J), with the impact absorption energy on the surface of the weld being 217.7 J, similar to that of the base material (225.3 J), and the fracture mechanism was primarily a ductile fracture. The impact absorption energy in the core of the weld was 103.7 J, with the fracture mechanism mainly being a brittle fracture. The EBSD results indicated that due to the influence of the welding thermal cycle and the cooling effect of the narrow-gap process, the grains gradually coarsened from the surface of the welded plate to the core of the weld, which was the main reason for the decreased impact toughness at the joint core. This study demonstrates the feasibility of using narrow-gap laser wire filling welding for 100-mm new type ultra-thick offshore steel and provides a new approach for the joining of ultra-thick steel plates.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助俭朴的天薇采纳,获得10
1秒前
SciGPT应助zy采纳,获得10
1秒前
123发布了新的文献求助30
2秒前
kkdd完成签到,获得积分10
3秒前
萧萧应助暮鼓采纳,获得10
3秒前
在水一方应助科研通管家采纳,获得10
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
5秒前
Jasper应助科研通管家采纳,获得10
5秒前
现代觅珍发布了新的文献求助10
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
5秒前
bkagyin应助科研通管家采纳,获得10
5秒前
chall应助科研通管家采纳,获得10
5秒前
lizhi完成签到,获得积分10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
hhhh应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得30
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得30
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
北地风情完成签到 ,获得积分10
5秒前
丘比特应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
老福贵儿应助科研通管家采纳,获得10
6秒前
7秒前
刘岩发布了新的文献求助10
7秒前
动听的大山完成签到,获得积分10
7秒前
ccc关注了科研通微信公众号
7秒前
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
半圆亻发布了新的文献求助10
10秒前
10秒前
11秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5662810
求助须知:如何正确求助?哪些是违规求助? 4844934
关于积分的说明 15101206
捐赠科研通 4821125
什么是DOI,文献DOI怎么找? 2580580
邀请新用户注册赠送积分活动 1534718
关于科研通互助平台的介绍 1493173