Rapid Urban Flood Inundation Forecasting Using a Physics-Informed Deep Learning Approach

大洪水 环境科学 洪水预报 气象学 计算机科学 地理 考古
作者
F. Yang,Ding Wu,Jianshi Zhao,Lixiang Song,Dawen Yang,Xudong Li
标识
DOI:10.2139/ssrn.4758455
摘要

Physics-based models can achieve precise flood inundation forecasts, but their real-world application is limited by their high computational cost. Deep learning (DL) models, with the capability to establish mapping relationships for complex mechanistic processes and high computational efficiency, serve as promising alternatives. However, DL models require massive amounts of training data to achieve robust performance, and such data are not available in most cases. In this study, an approach that couples a hydrodynamic model and a DL model to realize rapid forecasting of urban flood inundation is proposed. Substantial data on urban flood inundation under varying rainfall events are generated based on the hydrodynamic model. Real-time water level data from hydrological gauges are employed to establish initial conditions. Based on these data, a DL model that fully considers the physical mechanisms of flood inundation and the feature attributes of inputs and outputs is developed. The results show that 1) the hydrodynamic model effectively provides training samples for the DL model, addressing the limitations of insufficient urban flood inundation data; 2) the DL model proficiently captures the occurrence of grid-based flood inundation events, demonstrating commendable effectiveness in predicting inundation depths with a high level of accuracy; and 3) the DL model forecasts flood inundation in a region of 250,000 grids over 12 time steps within 12 seconds, meeting the requirements for real-time management. Compared to traditional hydrodynamic modeling methods, the proposed approach enhances forecasting efficiency and yields high accuracy, providing an efficient and accurate method for urban flood inundation forecasting.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
研友_VZG7GZ应助11采纳,获得10
9秒前
10秒前
可爱的函函应助xiaolan采纳,获得10
11秒前
wangxilin99完成签到,获得积分10
13秒前
YingyingFan完成签到,获得积分10
13秒前
SYLH应助zfihead采纳,获得10
14秒前
17秒前
坐井观天完成签到,获得积分10
17秒前
monoanan完成签到 ,获得积分10
19秒前
中午吃什么完成签到,获得积分10
19秒前
20秒前
linxue完成签到,获得积分10
20秒前
gyh发布了新的文献求助10
22秒前
23秒前
24秒前
25秒前
南巷完成签到,获得积分10
25秒前
牛牛月饼完成签到,获得积分20
26秒前
26秒前
开心每一天完成签到,获得积分10
27秒前
11发布了新的文献求助10
27秒前
ddaa发布了新的文献求助10
28秒前
29秒前
三幅画发布了新的文献求助10
32秒前
田様应助gyh采纳,获得10
33秒前
田様应助跳跃的枕头采纳,获得10
33秒前
33秒前
高高白曼舞完成签到,获得积分10
34秒前
36秒前
灯泡泡完成签到,获得积分10
36秒前
ddaa完成签到,获得积分10
38秒前
土豆宝完成签到,获得积分10
39秒前
自信鞯完成签到,获得积分10
39秒前
蜉蝣发布了新的文献求助10
39秒前
40秒前
40秒前
xiaolan发布了新的文献求助10
40秒前
shiqi发布了新的文献求助10
43秒前
土豆宝发布了新的文献求助30
45秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785875
求助须知:如何正确求助?哪些是违规求助? 3331224
关于积分的说明 10250683
捐赠科研通 3046706
什么是DOI,文献DOI怎么找? 1672190
邀请新用户注册赠送积分活动 801055
科研通“疑难数据库(出版商)”最低求助积分说明 759979