Antibody-SGM, a Score-Based Generative Model for Antibody Heavy-Chain Design

计算机科学 计算生物学 蛋白质设计 序列(生物学) 生成模型 蛋白质工程 人工智能 蛋白质结构 生成语法 生物 遗传学 生物化学
作者
Xuezhi Xie,Pedro A. Valiente,Jin Sub Lee,Ji‐Sun Kim,Philip M. Kim
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (17): 6745-6757 被引量:1
标识
DOI:10.1021/acs.jcim.4c00711
摘要

Traditional computational methods for antibody design involved random mutagenesis followed by energy function assessment for candidate selection. Recently, diffusion models have garnered considerable attention as cutting-edge generative models, lauded for their remarkable performance. However, these methods often focus solely on the backbone or sequence, resulting in the incomplete depiction of the overall structure and necessitating additional techniques to predict the missing component. This study presents Antibody-SGM, an innovative joint structure-sequence diffusion model that addresses the limitations of existing protein backbone generation models. Unlike previous models, Antibody-SGM successfully integrates sequence-specific attributes and functional properties into the generation process. Our methodology generates full-atom native-like antibody heavy chains by refining the generation to create valid pairs of sequences and structures, starting with random sequences and structural properties. The versatility of our method is demonstrated through various applications, including the design of full-atom antibodies, antigen-specific CDR design, antibody heavy chains optimization, validation with Alphafold3, and the identification of crucial antibody sequences and structural features. Antibody-SGM also optimizes protein function through active inpainting learning, allowing simultaneous sequence and structure optimization. These improvements demonstrate the promise of our strategy for protein engineering and significantly increase the power of protein design models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刀英俊发布了新的文献求助10
刚刚
只然发布了新的文献求助10
1秒前
1秒前
1秒前
Giaogiao发布了新的文献求助10
3秒前
汉堡包应助杨舒玉采纳,获得30
4秒前
小太爷发布了新的文献求助10
5秒前
zhouyane发布了新的文献求助10
5秒前
5秒前
7秒前
张蕊发布了新的文献求助10
8秒前
wzy发布了新的文献求助10
9秒前
9秒前
beforethedawn完成签到,获得积分10
9秒前
善学以致用应助yunshui采纳,获得10
10秒前
眼睛大唯雪完成签到 ,获得积分10
10秒前
10秒前
10秒前
那无若关注了科研通微信公众号
10秒前
11秒前
ding应助悦耳的奇异果采纳,获得10
11秒前
12秒前
12秒前
只然完成签到,获得积分10
12秒前
Jasper应助发生了什么树采纳,获得10
12秒前
Lelym发布了新的文献求助30
12秒前
13秒前
小孙完成签到,获得积分10
13秒前
15秒前
轻松向彤发布了新的文献求助10
15秒前
专注白昼应助Zengyuan采纳,获得10
15秒前
碗碗完成签到,获得积分10
15秒前
信wz发布了新的文献求助10
16秒前
二十又澪完成签到,获得积分10
18秒前
慕青应助李照普采纳,获得10
19秒前
19秒前
20秒前
兔子发布了新的文献求助10
21秒前
简单面包完成签到,获得积分10
22秒前
Latono发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5262905
求助须知:如何正确求助?哪些是违规求助? 4423643
关于积分的说明 13770428
捐赠科研通 4298469
什么是DOI,文献DOI怎么找? 2358507
邀请新用户注册赠送积分活动 1354777
关于科研通互助平台的介绍 1315989