Electricity behaviors anomaly detection based on multi-feature fusion and contrastive learning

计算机科学 异常检测 特征(语言学) 异常(物理) 数据挖掘 人工智能 变压器 模式识别(心理学) 机器学习 工程类 哲学 语言学 物理 电气工程 凝聚态物理 电压
作者
Yongming Guan,Yuliang Shi,Gang Wang,Jiliang Zhang,Xinjun Wang,Zhiyong Chen,Hui Li
出处
期刊:Information Systems [Elsevier BV]
卷期号:127: 102457-102457
标识
DOI:10.1016/j.is.2024.102457
摘要

Abnormal electricity usage detection is the process of discovering and diagnosing abnormal electricity usage behavior by monitoring and analyzing the electricity usage in the power system. How to improve the accuracy of anomaly detection is a popular research topic. Most studies use neural networks for anomaly detection, but ignore the effect of missing electricity data on anomaly detection performance. Missing value completion is an important method to improve the quality of electricity data and to optimize the anomaly detection performance. Moreover, most studies have ignored the potential correlation relationship between spatial features by modeling the temporal features of electricity data. Therefore, this paper proposes an electricity anomaly detection model based on multi-feature fusion and contrastive learning. The model integrates the temporal and spatial features to jointly accomplish electricity anomaly detection. In terms of temporal feature representation learning, an improved bi-directional LSTM is designed to achieve the missing value completion of electricity data, and combined with CNN to capture the electricity consumption behavior patterns in the temporal data. In terms of spatial feature representation learning, GCN and Transformer are used to fully explore the complex correlation relationships among data. In addition, in order to improve the performance of anomaly detection, this paper also designs a gated fusion module and combines the idea of contrastive learning to strengthen the representation ability of electricity data. Finally, we demonstrate through experiments that the method proposed in this paper can effectively improve the performance of electricity behavior anomaly detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
昏睡的静丹完成签到,获得积分20
刚刚
zxxx发布了新的文献求助10
1秒前
瓜子完成签到,获得积分10
2秒前
菠萝平发布了新的文献求助10
2秒前
英俊的铭应助charon采纳,获得30
2秒前
3秒前
3秒前
壮观溪流完成签到 ,获得积分10
5秒前
6秒前
kun应助lihua采纳,获得10
6秒前
orange9发布了新的文献求助10
7秒前
游a完成签到,获得积分10
7秒前
标致小翠完成签到,获得积分10
7秒前
9秒前
菠萝平完成签到,获得积分10
10秒前
哈哈哈发布了新的文献求助10
11秒前
艾登登完成签到,获得积分10
11秒前
王冬雪完成签到,获得积分10
11秒前
12秒前
JamesPei应助认真的忆文采纳,获得10
13秒前
小乔同学完成签到,获得积分10
13秒前
13秒前
silent发布了新的文献求助10
14秒前
16秒前
19秒前
charon发布了新的文献求助30
19秒前
silent完成签到,获得积分20
21秒前
dawang发布了新的文献求助30
21秒前
科研通AI5应助伶俐的以晴采纳,获得10
23秒前
精明人达发布了新的文献求助10
24秒前
zho发布了新的文献求助30
26秒前
哈哈哈完成签到,获得积分10
28秒前
29秒前
精明人达完成签到,获得积分10
29秒前
29秒前
Drtaoao完成签到 ,获得积分10
31秒前
qiao应助奔波儿灞采纳,获得10
32秒前
没头脑发布了新的文献求助10
34秒前
ummmmm完成签到,获得积分10
35秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779897
求助须知:如何正确求助?哪些是违规求助? 3325264
关于积分的说明 10222437
捐赠科研通 3040465
什么是DOI,文献DOI怎么找? 1668851
邀请新用户注册赠送积分活动 798805
科研通“疑难数据库(出版商)”最低求助积分说明 758563