Electricity behaviors anomaly detection based on multi-feature fusion and contrastive learning

计算机科学 异常检测 特征(语言学) 异常(物理) 数据挖掘 人工智能 变压器 模式识别(心理学) 机器学习 工程类 语言学 电气工程 物理 哲学 电压 凝聚态物理
作者
Yongming Guan,Yuliang Shi,Gang Wang,Jiliang Zhang,Xinjun Wang,Zhiyong Chen,Hui Li
出处
期刊:Information Systems [Elsevier BV]
卷期号:127: 102457-102457
标识
DOI:10.1016/j.is.2024.102457
摘要

Abnormal electricity usage detection is the process of discovering and diagnosing abnormal electricity usage behavior by monitoring and analyzing the electricity usage in the power system. How to improve the accuracy of anomaly detection is a popular research topic. Most studies use neural networks for anomaly detection, but ignore the effect of missing electricity data on anomaly detection performance. Missing value completion is an important method to improve the quality of electricity data and to optimize the anomaly detection performance. Moreover, most studies have ignored the potential correlation relationship between spatial features by modeling the temporal features of electricity data. Therefore, this paper proposes an electricity anomaly detection model based on multi-feature fusion and contrastive learning. The model integrates the temporal and spatial features to jointly accomplish electricity anomaly detection. In terms of temporal feature representation learning, an improved bi-directional LSTM is designed to achieve the missing value completion of electricity data, and combined with CNN to capture the electricity consumption behavior patterns in the temporal data. In terms of spatial feature representation learning, GCN and Transformer are used to fully explore the complex correlation relationships among data. In addition, in order to improve the performance of anomaly detection, this paper also designs a gated fusion module and combines the idea of contrastive learning to strengthen the representation ability of electricity data. Finally, we demonstrate through experiments that the method proposed in this paper can effectively improve the performance of electricity behavior anomaly detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
3秒前
3秒前
5秒前
华仔应助科研通管家采纳,获得30
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
桐桐应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
慕青应助科研通管家采纳,获得10
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得20
7秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
Owen应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
田様应助科研通管家采纳,获得10
7秒前
8秒前
8秒前
阿狸贱贱发布了新的文献求助20
9秒前
文文发布了新的文献求助10
10秒前
hl268发布了新的文献求助10
11秒前
14秒前
14秒前
aaa应助嗨好采纳,获得10
15秒前
大胆雨竹完成签到,获得积分10
16秒前
火星上的青寒完成签到,获得积分10
16秒前
明亮猫咪完成签到 ,获得积分10
16秒前
rsy发布了新的文献求助10
17秒前
hl268完成签到,获得积分10
17秒前
xxb发布了新的文献求助10
18秒前
李审绥完成签到,获得积分10
18秒前
18秒前
18秒前
爆米花应助铁柱采纳,获得10
19秒前
Azyyyy发布了新的文献求助30
19秒前
19秒前
乐乐应助yenom采纳,获得10
19秒前
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4580544
求助须知:如何正确求助?哪些是违规求助? 3998551
关于积分的说明 12379420
捐赠科研通 3672981
什么是DOI,文献DOI怎么找? 2024311
邀请新用户注册赠送积分活动 1058298
科研通“疑难数据库(出版商)”最低求助积分说明 945017