Development and Internal Validation of Machine Learning to Predict Postoperative Worse Functional Status after Surgical Treatment for Thoracic Spinal Stenosis

医学 胸椎 狭窄 外科 放射科 腰椎 腰椎
作者
Tun Liu,Jia Li,Huaguang Qi,Zhengtang Guo,Song‐Chuan Zhao,Baoping Zhang,Langbo Li,Gang Wu,Gang Wang
出处
期刊:Medical Science Monitor [International Scientific Information Inc.]
卷期号:30
标识
DOI:10.12659/msm.945310
摘要

BACKGROUND The objective of this study was to develop and validate machine learning (ML) algorithms to predict the 30-day and 6-month risk of deteriorating functional status following surgical treatment for thoracic spinal stenosis (TSS). We aimed to provide surgeons with tools to identify patients with TSS who have a higher risk of postoperative functional decline. MATERIAL AND METHODS The records of 327 patients with TSS who completed both follow-up visits were analyzed. Our primary endpoint was the dichotomized change in the perioperative Japanese Orthopedic Association (JOA) score, categorized based on whether it deteriorated or not. The models were developed using Naïve Bays, LightGBM, XGBoost, logistic regression, and random forest classification models. The model performance was assessed by accuracy and the c-statistic. ML algorithms were trained, optimized, and tested. RESULTS The best-performing algorithms for predicting functional decline at 30 days and 6 months after TSS surgery were XGBoost (accuracy=88.17%, c-statistic=0.83) and Naïve Bays (accuracy=86.03%, c-statistic=0.80). Both algorithms presented good calibration and discrimination in our testing data. We identified several significant predictors, including poor quality of intraoperative SSEP/MEP baseline, poor quality of preoperative SSEP, duration of symptoms, operated level, and motor dysfunction of the lower extremity. CONCLUSIONS The best-performing algorithms for predicting functional decline at 30 days and 6 months after TSS surgery were XGBoost (accuracy=88.17%, c-statistic=0.83) and Naïve Bays (accuracy=86.03%, c-statistic=0.80). Both algorithms presented good calibration and discrimination in our testing data. We identified several significant predictors, including poor quality of intraoperative SSEP/MEP baseline, poor quality of preoperative SSEP, duration of symptoms, operated level, and motor dysfunction of the lower extremity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Toread完成签到 ,获得积分10
刚刚
九九九完成签到,获得积分20
1秒前
1秒前
狄谷南完成签到,获得积分10
2秒前
ppdzhu发布了新的文献求助10
2秒前
3秒前
YUN发布了新的文献求助10
3秒前
3秒前
scihexin完成签到,获得积分10
5秒前
6秒前
星辰大海应助Noah采纳,获得10
6秒前
侃侃发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
123发布了新的文献求助10
7秒前
大个应助ppdzhu采纳,获得10
8秒前
8秒前
77关闭了77文献求助
8秒前
rxgg发布了新的文献求助10
10秒前
11秒前
chensiqi发布了新的文献求助10
12秒前
12秒前
洁净晓夏发布了新的文献求助10
12秒前
12秒前
鹿lu发布了新的文献求助10
12秒前
13秒前
龚成明发布了新的文献求助10
13秒前
Hyp完成签到 ,获得积分10
14秒前
酷波er应助大方的豪英采纳,获得20
14秒前
15秒前
不安的夜柳完成签到,获得积分10
16秒前
甜儿完成签到,获得积分10
16秒前
16秒前
17秒前
Hello应助洁净晓夏采纳,获得10
17秒前
rxgg完成签到,获得积分10
18秒前
Noah发布了新的文献求助10
18秒前
19秒前
英俊的铭应助鹿lu采纳,获得10
20秒前
高分求助中
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3844493
求助须知:如何正确求助?哪些是违规求助? 3386880
关于积分的说明 10546518
捐赠科研通 3107344
什么是DOI,文献DOI怎么找? 1711747
邀请新用户注册赠送积分活动 824152
科研通“疑难数据库(出版商)”最低求助积分说明 774573