DQKNet: Deep Quasiconformal Kernel Network Learning for Image Classification

核(代数) 人工智能 模式识别(心理学) 图像(数学) 计算机科学 数学 离散数学
作者
Jia Zhai,Zikai Zhang,Ye Fan,Ziquan Wang,Dan Guo
出处
期刊:Electronics [Multidisciplinary Digital Publishing Institute]
卷期号:13 (21): 4168-4168
标识
DOI:10.3390/electronics13214168
摘要

Compared to traditional technology, image classification technology possesses a superior capability for quantitative analysis of the target and background, and holds significant applications in the domains of ground target reconnaissance, marine environment monitoring, and emergency response to sudden natural disasters, among others. Currently, the enhancement of spatial spectral resolution heightens the difficulty and reduces the efficiency of classification, posing a substantial challenge to the aforementioned applications. Hence, the classification algorithm is required to take both computing power and classification accuracy into account. Research indicates that the deep kernel mapping network can accommodate both computing power and classification accuracy. By employing the kernel mapping function as the network node function of deep learning, it effectively enhances the classification accuracy under the condition of limited computing power. Therefore, to address the issue of network structure optimization of deep mapping networks and the insufficient application of line feature learning and expression in existing network structures, considering the adaptive optimization of network structures, deep quasiconformal kernel network learning (DQKNet) is proposed for image classification. Firstly, the structural parameters and learning parameters of the deep kernel mapping network are optimized. This approach can adaptively adjust the network structure based on the distribution characteristics of the data and enhance the performance of image classification. Secondly, the computational network node optimization method of quasiconformal kernel learning is applied to this network, further elevating the performance of the deep kernel learning mapping network in image classification. The experimental results demonstrate that the improvement in the deep kernel mapping network from the perspectives of accounting children, mapping network nodes, and network structure can effectively enhance the feature extraction and classification performance of the data. On the five public datasets, the average AA, OA, and KC values of our algorithm are 91.99, 91.25, and 85.99, respectively, outperforming the currently most-advanced algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xiaohuang完成签到,获得积分10
2秒前
weny完成签到,获得积分10
4秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得10
6秒前
阔达紫青应助科研通管家采纳,获得10
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
顾矜应助科研通管家采纳,获得10
6秒前
Orange应助科研通管家采纳,获得10
6秒前
大成子发布了新的文献求助10
6秒前
李爱国应助科研通管家采纳,获得10
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
华仔应助科研通管家采纳,获得10
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
7秒前
ding应助科研通管家采纳,获得10
7秒前
Lucas应助科研通管家采纳,获得10
7秒前
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
xs小仙女应助科研通管家采纳,获得10
7秒前
三里墩头应助科研通管家采纳,获得10
7秒前
大模型应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得30
7秒前
所所应助科研通管家采纳,获得10
7秒前
JamesPei应助科研通管家采纳,获得30
8秒前
8秒前
8秒前
怀安完成签到,获得积分20
9秒前
9秒前
9秒前
10秒前
科研通AI5应助Nancy采纳,获得10
12秒前
hubo完成签到,获得积分10
12秒前
zhh发布了新的文献求助20
12秒前
yyy完成签到,获得积分10
13秒前
胡攻科发布了新的文献求助10
13秒前
Isaac完成签到 ,获得积分10
14秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778226
求助须知:如何正确求助?哪些是违规求助? 3323870
关于积分的说明 10216390
捐赠科研通 3039102
什么是DOI,文献DOI怎么找? 1667782
邀请新用户注册赠送积分活动 798389
科研通“疑难数据库(出版商)”最低求助积分说明 758366