Use of a large language model with instruction‐tuning for reliable clinical frailty scoring

医学 可靠性(半导体) 脆弱性(计算) 卡帕 一致性(知识库) 比例(比率) 老年学 人工智能 计算机科学 功率(物理) 语言学 物理 哲学 计算机安全 量子力学
作者
Xiang Lee Jamie Kee,Gerald Gui Ren Sng,Daniel Yan Zheng Lim,Joshua Yi Min Tung,Hairil Rizal Abdullah,Anupama Roy Chowdury
出处
期刊:Journal of the American Geriatrics Society [Wiley]
被引量:2
标识
DOI:10.1111/jgs.19114
摘要

Abstract Background Frailty is an important predictor of health outcomes, characterized by increased vulnerability due to physiological decline. The Clinical Frailty Scale (CFS) is commonly used for frailty assessment but may be influenced by rater bias. Use of artificial intelligence (AI), particularly Large Language Models (LLMs) offers a promising method for efficient and reliable frailty scoring. Methods The study utilized seven standardized patient scenarios to evaluate the consistency and reliability of CFS scoring by OpenAI's GPT‐3.5‐turbo model. Two methods were tested: a basic prompt and an instruction‐tuned prompt incorporating CFS definition, a directive for accurate responses, and temperature control. The outputs were compared using the Mann–Whitney U test and Fleiss' Kappa for inter‐rater reliability. The outputs were compared with historic human scores of the same scenarios. Results The LLM's median scores were similar to human raters, with differences of no more than one point. Significant differences in score distributions were observed between the basic and instruction‐tuned prompts in five out of seven scenarios. The instruction‐tuned prompt showed high inter‐rater reliability (Fleiss' Kappa of 0.887) and produced consistent responses in all scenarios. Difficulty in scoring was noted in scenarios with less explicit information on activities of daily living (ADLs). Conclusions This study demonstrates the potential of LLMs in consistently scoring clinical frailty with high reliability. It demonstrates that prompt engineering via instruction‐tuning can be a simple but effective approach for optimizing LLMs in healthcare applications. The LLM may overestimate frailty scores when less information about ADLs is provided, possibly as it is less subject to implicit assumptions and extrapolation than humans. Future research could explore the integration of LLMs in clinical research and frailty‐related outcome prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Nico多多看paper完成签到,获得积分10
刚刚
科研通AI5应助caicainuegou采纳,获得10
刚刚
酷酷珠发布了新的文献求助20
刚刚
南知寒发布了新的文献求助10
刚刚
科目三应助SYY采纳,获得10
刚刚
阿呸完成签到,获得积分10
刚刚
as9988776654完成签到 ,获得积分10
1秒前
1秒前
陶醉发布了新的文献求助10
1秒前
星辰大海应助HM采纳,获得10
1秒前
栗子完成签到 ,获得积分10
2秒前
2秒前
一一完成签到,获得积分10
2秒前
2秒前
sdl发布了新的文献求助10
3秒前
玖Nine发布了新的文献求助10
3秒前
Lawrence完成签到,获得积分10
4秒前
ajc发布了新的文献求助10
4秒前
池不胖发布了新的文献求助10
5秒前
dxm发布了新的文献求助10
6秒前
浑天与完成签到,获得积分20
6秒前
崽崽完成签到,获得积分10
6秒前
我叫孙悟空完成签到 ,获得积分10
7秒前
传奇3应助催化民工采纳,获得10
7秒前
7秒前
李小新完成签到 ,获得积分10
7秒前
WYH完成签到,获得积分10
7秒前
明明ming999_完成签到,获得积分10
7秒前
YY发布了新的文献求助10
7秒前
8秒前
缥缈幻翠完成签到,获得积分10
9秒前
9秒前
Dali完成签到 ,获得积分10
10秒前
天神完成签到,获得积分10
10秒前
10秒前
李佳慧完成签到,获得积分10
11秒前
12秒前
眼睛大的黑猫完成签到,获得积分10
12秒前
负责金毛完成签到,获得积分10
13秒前
素的素的完成签到,获得积分10
13秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
The Oxford Handbook of Video Game Music and Sound 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827518
求助须知:如何正确求助?哪些是违规求助? 3369808
关于积分的说明 10458344
捐赠科研通 3089517
什么是DOI,文献DOI怎么找? 1699957
邀请新用户注册赠送积分活动 817567
科研通“疑难数据库(出版商)”最低求助积分说明 770269