A non-invasive predictive model based on multimodality ultrasonography images to differentiate malignant from benign focal liver lesions

列线图 接收机工作特性 医学 逻辑回归 放射科 曲线下面积 超声波 内科学
作者
Qianqian Shen,Wei Wu,Ruining Wang,Jiaqi Zhang,Liping Liu
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-74740-7
摘要

Abstract We have developed a non-invasive predictive nomogram model that combines image features from Sonazoid contrast-enhanced ultrasound (SCEUS) and Sound touch elastography (STE) with clinical features for accurate differentiation of malignant from benign focal liver lesions (FLLs). This study ultimately encompassed 262 patients with FLLs from the First Hospital of Shanxi Medical University, covering the period from March 2020 to April 2023, and divided them into training set ( n = 183) and test set ( n = 79). Logistic regression analysis was used to identify independent indicators and develop a predictive model based on image features from SCEUS, STE, and clinical features. The area under the receiver operating characteristic (AUC) curve was determined to estimate the diagnostic performance of the nomogram with CEUS LI-RADS, and STE values. The C-index, calibration curve, and decision curve analysis (DCA) were further used for validation. Multivariate and LASSO logistic regression analyses identified that age, ALT, arterial phase hyperenhancement (APHE), enhancement level in the Kupffer phase, and Emean by STE were valuable predictors to distinguish malignant from benign lesions. The nomogram achieved AUCs of 0.988 and 0.978 in the training and test sets, respectively, outperforming the CEUS LI-RADS (0.754 and 0.824) and STE (0.909 and 0.923) alone. The C-index and calibration curve demonstrated that the nomogram offers high diagnostic accuracy with predicted values consistent with actual values. DCA indicated that the nomogram could increase the net benefit for patients. The predictive nomogram innovatively combining SCEUS, STE, and clinical features can effectively improve the diagnostic performance for focal liver lesions, which may help with individualized diagnosis and treatment in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ip07in13发布了新的文献求助30
1秒前
1秒前
2秒前
万能图书馆应助vicky采纳,获得10
2秒前
3秒前
YT完成签到,获得积分10
3秒前
十一发布了新的文献求助30
3秒前
changnan完成签到,获得积分20
3秒前
john_joestar发布了新的文献求助10
4秒前
zzz完成签到,获得积分10
5秒前
MAIDANG发布了新的文献求助10
6秒前
6秒前
7秒前
领导范儿应助dd采纳,获得10
8秒前
香蕉觅云应助等待的雪碧采纳,获得10
8秒前
psm完成签到 ,获得积分10
8秒前
9秒前
11秒前
chen发布了新的文献求助10
11秒前
Zeng发布了新的文献求助10
12秒前
iuhgnor发布了新的文献求助10
12秒前
hh发布了新的文献求助10
13秒前
carrotleah发布了新的文献求助20
15秒前
15秒前
zloong发布了新的文献求助20
16秒前
好名字完成签到 ,获得积分10
18秒前
19秒前
19秒前
20秒前
科研通AI5应助MAIDANG采纳,获得10
20秒前
21秒前
北港十里巷完成签到,获得积分10
21秒前
dd发布了新的文献求助10
22秒前
john_joestar完成签到,获得积分10
23秒前
changnan发布了新的文献求助10
24秒前
机灵安白发布了新的文献求助10
25秒前
岛语安完成签到,获得积分20
26秒前
26秒前
YingyingFan发布了新的文献求助10
26秒前
zloong完成签到,获得积分10
28秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785875
求助须知:如何正确求助?哪些是违规求助? 3331226
关于积分的说明 10250759
捐赠科研通 3046728
什么是DOI,文献DOI怎么找? 1672190
邀请新用户注册赠送积分活动 801071
科研通“疑难数据库(出版商)”最低求助积分说明 759979