A survey on feature extraction and learning techniques for link prediction in homogeneous and heterogeneous complex networks

同种类的 计算机科学 链接(几何体) 人工智能 机器学习 萃取(化学) 特征(语言学) 数据挖掘 计算机网络 数学 语言学 化学 哲学 色谱法 组合数学
作者
Puneet Kapoor,Sakshi Kaushal,Harish Kumar,Kushal Kanwar
出处
期刊:Artificial Intelligence Review [Springer Science+Business Media]
卷期号:57 (12)
标识
DOI:10.1007/s10462-024-10998-7
摘要

Complex networks are commonly observed in several real-world areas, such as social, biological, and technical systems, where they exhibit complicated patterns of connectedness and organised clusters. These networks have intricate topological characteristics that frequently elude conventional characterization. Link prediction in complex networks, like data flow in telecommunications networks, protein interactions in biological systems, and social media interactions on platforms like Facebook, etc., is an essential element of network analytics and presents fresh research challenges. Consequently, there is a growing emphasis in research on creating new link prediction methods for different network applications. This survey investigates several strategies related to link prediction, ranging from feature extraction based to feature learning based techniques, with a specific focus on their utilisation in dynamic and developing network topologies. Furthermore, this paper emphasises on a wide variety of feature learning techniques that go beyond basic feature extraction and matrix factorization. It includes advanced learning-based algorithms and neural network techniques specifically designed for link prediction. The study also presents evaluation results of different link prediction techniques on homogeneous and heterogeneous network datasets, and provides a thorough examination of existing methods and potential areas for further investigation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助ChenStu采纳,获得10
刚刚
刚刚
刚刚
王QQ完成签到 ,获得积分10
1秒前
1秒前
1秒前
皮老八发布了新的文献求助10
2秒前
研友_8KAOBn发布了新的文献求助10
2秒前
幽默滑板发布了新的文献求助10
2秒前
Bryce完成签到 ,获得积分10
2秒前
乐乐发布了新的文献求助10
3秒前
aslink完成签到,获得积分10
3秒前
hl发布了新的文献求助10
3秒前
3秒前
4秒前
5秒前
5秒前
zhzssaijj发布了新的文献求助10
6秒前
青柠完成签到,获得积分10
6秒前
7秒前
聪明花生完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
十令完成签到,获得积分10
9秒前
风中的青完成签到,获得积分10
9秒前
m7m发布了新的文献求助20
9秒前
Owen应助Paris采纳,获得10
9秒前
clara完成签到,获得积分10
10秒前
123发布了新的文献求助10
10秒前
科研通AI5应助南栀采纳,获得10
10秒前
天真的嚓茶完成签到,获得积分10
11秒前
乐乐完成签到,获得积分10
11秒前
某某某完成签到,获得积分10
11秒前
zho发布了新的文献求助10
11秒前
flipped发布了新的文献求助10
11秒前
晨曦完成签到,获得积分10
11秒前
11秒前
xiaoqin发布了新的文献求助10
12秒前
12秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785297
求助须知:如何正确求助?哪些是违规求助? 3330886
关于积分的说明 10248776
捐赠科研通 3046307
什么是DOI,文献DOI怎么找? 1671979
邀请新用户注册赠送积分活动 800924
科研通“疑难数据库(出版商)”最低求助积分说明 759881