A unified hybrid transformer for joint MRI sequences super-resolution and missing data imputation

计算机科学 插补(统计学) 缺少数据 人工智能 变压器 接头(建筑物) 模式识别(心理学) 数据挖掘 算法 机器学习 电气工程 工程类 建筑工程 电压
作者
Yulin Wang,Haifeng Hu,Shangqian Yu,Yuxin Yang,Yihao Guo,Xiao‐Peng Song,Feng Chen,Qian Liu
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (13): 135006-135006 被引量:13
标识
DOI:10.1088/1361-6560/acdc80
摘要

Abstract Objective. High-resolution multi-modal magnetic resonance imaging (MRI) is crucial in clinical practice for accurate diagnosis and treatment. However, challenges such as budget constraints, potential contrast agent deposition, and image corruption often limit the acquisition of multiple sequences from a single patient. Therefore, the development of novel methods to reconstruct under-sampled images and synthesize missing sequences is crucial for clinical and research applications. Approach . In this paper, we propose a unified hybrid framework called SIFormer, which utilizes any available low-resolution MRI contrast configurations to complete super-resolution (SR) of poor-quality MR images and impute missing sequences simultaneously in one forward process. SIFormer consists of a hybrid generator and a convolution-based discriminator. The generator incorporates two key blocks. First, the dual branch attention block combines the long-range dependency building capability of the transformer with the high-frequency local information capture capability of the convolutional neural network in a channel-wise split manner. Second, we introduce a learnable gating adaptation multi-layer perception in the feed-forward block to optimize information transmission efficiently. Main results . Comparative evaluations against six state-of-the-art methods demonstrate that SIFormer achieves enhanced quantitative performance and produces more visually pleasing results for image SR and synthesis tasks across multiple datasets. Significance . Extensive experiments conducted on multi-center multi-contrast MRI datasets, including both healthy individuals and brain tumor patients, highlight the potential of our proposed method to serve as a valuable supplement to MRI sequence acquisition in clinical and research settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_V8RDYn完成签到,获得积分10
1秒前
1秒前
3秒前
动听衬衫发布了新的文献求助10
3秒前
Joy完成签到,获得积分10
4秒前
廿二完成签到,获得积分10
5秒前
5秒前
远看寒山发布了新的文献求助10
6秒前
青夏发布了新的文献求助10
6秒前
lzhgoashore发布了新的文献求助10
6秒前
12秒前
台灯记得充电完成签到 ,获得积分10
12秒前
浮游应助xu采纳,获得10
12秒前
13秒前
13秒前
风往北吹完成签到 ,获得积分10
14秒前
byyyy完成签到,获得积分10
15秒前
ok完成签到,获得积分10
18秒前
阿梓发布了新的文献求助10
19秒前
淡定的富发布了新的文献求助10
20秒前
DragonAca发布了新的文献求助10
20秒前
稀饭完成签到,获得积分10
22秒前
复杂的夜香完成签到 ,获得积分10
23秒前
完美世界应助Bubble采纳,获得10
24秒前
25秒前
老笨笨发布了新的文献求助50
27秒前
情怀应助szj采纳,获得10
30秒前
九号完成签到 ,获得积分10
30秒前
香蕉觅云应助小酥肉采纳,获得30
33秒前
蛋蛋完成签到 ,获得积分10
34秒前
35秒前
yll完成签到,获得积分10
38秒前
38秒前
39秒前
追人的风筝完成签到,获得积分10
39秒前
小白完成签到 ,获得积分10
43秒前
小酥肉发布了新的文献求助30
43秒前
45秒前
honghu完成签到,获得积分10
46秒前
nn发布了新的文献求助10
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 560
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5363730
求助须知:如何正确求助?哪些是违规求助? 4493243
关于积分的说明 13989601
捐赠科研通 4396864
什么是DOI,文献DOI怎么找? 2415180
邀请新用户注册赠送积分活动 1407898
关于科研通互助平台的介绍 1382747