Epistemic planning for multi-robot systems in communication-restricted environments

计算机科学 机器人 规划师 集合(抽象数据类型) 国家(计算机科学) 人机交互 人工智能 代表(政治) 情境演算 算法 政治学 政治 程序设计语言 法学
作者
Lauren Bramblett,Nicola Bezzo
出处
期刊:Frontiers in Robotics and AI [Frontiers Media]
卷期号:10
标识
DOI:10.3389/frobt.2023.1149439
摘要

Many real-world robotic applications such as search and rescue, disaster relief, and inspection operations are often set in unstructured environments with a restricted or unreliable communication infrastructure. In such environments, a multi-robot system must either be deployed to i) remain constantly connected, hence sacrificing operational efficiency or ii) allow disconnections considering when and how to regroup. In communication-restricted environments, we insist that the latter approach is desired to achieve a robust and predictable method for cooperative planning. One of the main challenges in achieving this goal is that optimal planning in partially unknown environments without communication requires an intractable sequence of possibilities. To solve this problem, we propose a novel epistemic planning approach for propagating beliefs about the system’s states during communication loss to ensure cooperative operations. Typically used for discrete multi-player games or natural language processing, epistemic planning is a powerful representation of reasoning through events, actions, and belief revisions, given new information. Most robot applications use traditional planning to interact with their immediate environment and only consider knowledge of their own state. By including an epistemic notion in planning, a robot may enact depth-of-reasoning about the system’s state, analyzing its beliefs about each robot in the system. In this method, a set of possible beliefs about other robots in the system are propagated using a Frontier-based planner to accomplish the coverage objective. As disconnections occur, each robot tracks beliefs about the system state and reasons about multiple objectives: i) coverage of the environment, ii) dissemination of new observations, and iii) possible information sharing from other robots. A task allocation optimization algorithm with gossip protocol is used in conjunction with the epistemic planning mechanism to locally optimize all three objectives, considering that in a partially unknown environment, the belief propagation may not be safe or possible to follow and that another robot may be attempting an information relay using the belief state. Results indicate that our framework performs better than the standard solution for communication restrictions and even shows similar performance to simulations with no communication limitations. Extensive experiments provide evidence of the framework’s performance in real-world scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助涵泽采纳,获得10
3秒前
量子星尘发布了新的文献求助10
5秒前
高贵的晓筠完成签到 ,获得积分10
9秒前
风中黎昕完成签到 ,获得积分10
12秒前
12秒前
脑洞疼应助natao2000采纳,获得10
12秒前
16秒前
卿卿完成签到,获得积分10
17秒前
泥花发布了新的文献求助10
17秒前
兴奋冷松完成签到,获得积分10
19秒前
小鱼完成签到,获得积分10
19秒前
22秒前
22秒前
老王完成签到,获得积分10
23秒前
宁幼萱完成签到,获得积分10
23秒前
24秒前
雨天完成签到,获得积分10
25秒前
26秒前
达克赛德完成签到 ,获得积分10
27秒前
27秒前
dududu发布了新的文献求助10
28秒前
natao2000发布了新的文献求助10
30秒前
hzauhzau完成签到 ,获得积分10
30秒前
不想说完成签到,获得积分10
31秒前
尔蝶完成签到 ,获得积分10
32秒前
量子星尘发布了新的文献求助10
32秒前
fuws完成签到 ,获得积分10
33秒前
地球观光客完成签到,获得积分10
34秒前
友好的天奇完成签到 ,获得积分10
34秒前
菘蓝泽蓼完成签到,获得积分10
35秒前
Aicy1111111完成签到,获得积分10
36秒前
勃列日涅夫完成签到,获得积分10
37秒前
大憨憨完成签到 ,获得积分10
37秒前
小xy完成签到,获得积分10
38秒前
Air云完成签到,获得积分10
45秒前
wyblobin完成签到,获得积分10
45秒前
46秒前
大气的尔蓝完成签到,获得积分10
47秒前
不是省油的灯完成签到 ,获得积分10
48秒前
一路畅通accept完成签到,获得积分10
48秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3864070
求助须知:如何正确求助?哪些是违规求助? 3406385
关于积分的说明 10649507
捐赠科研通 3130343
什么是DOI,文献DOI怎么找? 1726364
邀请新用户注册赠送积分活动 831656
科研通“疑难数据库(出版商)”最低求助积分说明 779990