A deep cross-modal neural cognitive diagnosis framework for modeling student performance

计算机科学 人工智能 情态动词 认知 机器学习 特质 任务(项目管理) 利用 深度学习 人工神经网络 心理学 经济 程序设计语言 高分子化学 管理 化学 神经科学 计算机安全
作者
Lingyun Song,Mengting He,Xuequn Shang,Chen Yang,Jun Liu,Mengzhen Yu,Yu Lu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:230: 120675-120675 被引量:14
标识
DOI:10.1016/j.eswa.2023.120675
摘要

In intelligent education systems, one fundamental task is to predict student performance on new exercises and estimate the knowledge proficiency of students on knowledge concepts. Existing prediction methods are mainly constructed based on the classical cognitive diagnosis framework MIRT, where student performance on exercises are modeled as the interaction results of exercises’ trait vectors and students’ knowledge proficiency. The trait vector learning of exercises has a big effect on the estimation results of the knowledge proficiency. However, when learning the trait vectors, existing methods cannot exploit the rich contents of cross-modal exercises that are closely related to the traits of exercises. This makes it difficult for these methods to best cope with common cross-modal exercises. Besides, existing methods overlook the intrinsic complexity of examined concepts, which actually affects exercise traits, such as exercise difficulty. To address these issues, we propose a deep Cross-Modal Neural Cognitive Diagnosis framework (CMNCD), which mainly has two appealing advantages: (i) By extending MIRT under the framework of deep neural networks, CMNCD can effectively explore the fine-grained semantic information in the cross-modal contents of exercises for modeling student performance. (ii) CMNCD investigates the complexity of examined concepts based on the prerequisite relationships among concepts and incorporates it into the learning of exercises’ trait vectors. Extensive experiments on several real-world datasets show that our CMNCD outperforms state-of-the-art cognitive diagnosis methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Andy1201完成签到,获得积分10
刚刚
刚刚
馨馨完成签到 ,获得积分10
1秒前
一二三完成签到,获得积分10
1秒前
liu发布了新的文献求助10
1秒前
2秒前
2秒前
zzaswwd发布了新的文献求助10
4秒前
DING完成签到 ,获得积分10
5秒前
Marayoung发布了新的文献求助10
5秒前
Orange应助义气山水采纳,获得10
5秒前
jackycas发布了新的文献求助10
6秒前
1851611453完成签到 ,获得积分10
6秒前
6秒前
fan完成签到,获得积分10
7秒前
7秒前
7秒前
十三完成签到,获得积分10
8秒前
8秒前
DPH完成签到 ,获得积分10
9秒前
qwertnjj完成签到,获得积分10
9秒前
9秒前
酷波er应助Dream采纳,获得10
10秒前
柔弱的树叶完成签到 ,获得积分10
10秒前
10秒前
shuya发布了新的文献求助10
11秒前
哦呵呵哈哈啦啦完成签到 ,获得积分10
11秒前
充电宝应助阜睿采纳,获得10
12秒前
锦鲤发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
FashionBoy应助fan采纳,获得10
14秒前
14秒前
liumangtu发布了新的文献求助10
14秒前
冷静帅哥完成签到,获得积分10
15秒前
15秒前
王皮皮完成签到,获得积分10
16秒前
思源应助zq采纳,获得10
16秒前
fafafa完成签到,获得积分10
18秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Fatigue of Materials and Structures 260
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
An Integrated Solution for Application of Next-Generation Sequencing in Newborn Screening 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831979
求助须知:如何正确求助?哪些是违规求助? 3374351
关于积分的说明 10484424
捐赠科研通 3094186
什么是DOI,文献DOI怎么找? 1703366
邀请新用户注册赠送积分活动 819406
科研通“疑难数据库(出版商)”最低求助积分说明 771488