Dynamic Care Unit Placements Under Unknown Demand with Learning

单位(环理论) 运营管理 业务 计算机科学 营销 经济 心理学 数学教育
作者
Arlen Dean,Mohammad Zhalechian,Mark P. Van Oyen
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:27 (5): 1396-1414
标识
DOI:10.1287/msom.2022.0260
摘要

Problem definition: Care units are the facilities where admitted hospital patients receive treatment and monitoring services. This paper studies the problem of deciding which patients to place into the various available care units at any time. To determine placements in practice, hospitals rely on clinicians to discern a patient’s care needs and appropriately trade-off between future demand and limited bed availability. Making the right decisions remains challenging because patients are heterogeneous, and demand is uncertain. Methodology/results: We develop a dynamic resource allocation algorithm to decide unit placements by learning the care needs of different patient types. We model hospital beds as reusable resources and assume decision feedback is not immediately available, but rather delayed for an unknown and random length of time. Lastly, we consider the demand to be unknown and allow patient arrivals to be arbitrarily sequenced for robustness. The applicability of our algorithm is demonstrated with real-patient data from a hospital collaboration, where we evaluate our proposed approach using unplanned readmission rates as the performance metric. From extensive simulations, our results suggest the proposed algorithm tends to outperform several greedy benchmarks as well as a hospital benchmark model. A theoretical performance guarantee for our algorithm is provided to complement the case study. Managerial implications: This paper contributes new insights into designing dynamic decision-making models for hospital admissions operations. Our work presents a simple but effective data-driven support tool to help clinicians trade-off between available bed capacity and a patient’s care needs when making care unit placements. We also demonstrate how our algorithm can support the reduction of unplanned readmissions through improved placement decisions. Funding: This work was supported by National Science Foundation Graduate Research Fellowship Program [Grant DGE 1256260]. Partial support for this research was provided to the first-author (A. Dean) by the National Science Foundation Graduate Research Fellowship under Grant DGE1841052. Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors(s) and do not necessarily reflect the views of the National Science Foundation. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2022.0260 .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小强x完成签到,获得积分10
1秒前
煎饼果子完成签到 ,获得积分10
1秒前
橘生淮南完成签到,获得积分10
1秒前
小于完成签到,获得积分20
1秒前
1秒前
活泼的便当完成签到,获得积分10
1秒前
爪爪完成签到,获得积分10
2秒前
无花果应助阿福采纳,获得10
3秒前
nuantong1shy完成签到,获得积分10
3秒前
春风晚完成签到,获得积分10
3秒前
研友_Z6kxK8完成签到,获得积分10
4秒前
iNk应助tanhaha采纳,获得20
4秒前
4秒前
orixero应助无语的又夏采纳,获得10
4秒前
内向苡完成签到,获得积分10
4秒前
Sandy完成签到,获得积分10
5秒前
like411完成签到,获得积分10
5秒前
烟花应助权_888采纳,获得10
5秒前
小诗完成签到,获得积分10
5秒前
222完成签到,获得积分10
5秒前
evak完成签到,获得积分10
6秒前
HAHA发布了新的文献求助10
6秒前
友好的小虾米完成签到,获得积分10
6秒前
执着期待完成签到,获得积分10
6秒前
wu完成签到,获得积分10
7秒前
7秒前
一一2完成签到,获得积分10
8秒前
能干的初丹完成签到,获得积分10
8秒前
十一完成签到,获得积分10
8秒前
8秒前
9秒前
JiangSir完成签到,获得积分10
9秒前
9秒前
9秒前
Mali完成签到,获得积分10
9秒前
10秒前
张宏磊发布了新的文献求助10
10秒前
小白完成签到,获得积分10
10秒前
虚心岂愈完成签到,获得积分10
11秒前
繁星背后完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482836
求助须知:如何正确求助?哪些是违规求助? 4583525
关于积分的说明 14390528
捐赠科研通 4512908
什么是DOI,文献DOI怎么找? 2473262
邀请新用户注册赠送积分活动 1459272
关于科研通互助平台的介绍 1432886