Abstract Background Inflammatory bowel disease (IBD) involves pathological mechanical forces transduced by mechanosensitive Piezo1 channels. While electroacupuncture (EA) alleviates IBD injury, its relationship with Piezo1-mediated ferroptosis remains unknown. Methods Dextran sulfate sodium (DSS)-induced IBD mice and mechanically stressed HIEC-6 intestinal epithelial cells received EA or pharmacological modulators. Pathological scoring, transmission electron microscopy (TEM), inflammatory cytokine assays, Western blotting, and immunofluorescence evaluated mitochondrial dynamics and ferroptosis markers to elucidate the Piezo1-ferroptosis axis and EA's regulatory role. Results EA significantly reduced disease activity index (DAI), histopathological scores, colon shortening, and pro-inflammatory cytokines in IBD mice. By inhibiting fission, indicated by a decrease in dynamin-related protein 1 (DRP1), and mitophagy, shown by a reduction in Parkinson protein 2 (PARK2), EA maintained mitochondrial homeostasis. This effect was similar to ferroptosis inhibitor ferrostatin-1 (Fer-1). Moreover, EA lessened RSL3-induced exacerbation of ferroptosis. In vitro, mechanical stress or the Piezo1 agonist Yoda1 induced ferroptosis, which was evident from increased acyl-CoA synthetase Long-chain family member 4 (ACSL4), reactive oxygen species (ROS), malondialdehyde (MDA) and Fe 2 ⁺ levels, while decreased glutathione peroxidase 4 (GPX4), ferritin (FTH) and glutathione (GSH) levels. Critically, EA inhibited Piezo1 activation and counteracted Yoda1-aggravated epithelial ferroptosis in vivo. Conclusion Piezo1-mediated mitochondrial dyshomeostasis critically drives intestinal epithelial ferroptosis in IBD. EA regulates Piezo1 to maintain mitochondrial homeostasis and suppresses ferroptosis, offering a potential therapeutic strategy for IBD. Graphical Abstract