Squeeze‐and‐excitation‐attention‐based mobile vision transformer for grading recognition of bladder prolapse in pelvic MRI images

医学 分级(工程) 磁共振成像 卷积神经网络 放射科 人工智能 计算机科学 工程类 土木工程
作者
Shaojun Zhu,Guotao Chen,Hongguang Chen,Ying Lu,Maonian Wu,Bo Zheng,Dongquan Liu,Cheng Qian,Yun Chen
出处
期刊:Medical Physics [Wiley]
卷期号:51 (8): 5236-5249 被引量:4
标识
DOI:10.1002/mp.17171
摘要

Abstract Background Bladder prolapse is a common clinical disorder of pelvic floor dysfunction in women, and early diagnosis and treatment can help them recover. Pelvic magnetic resonance imaging (MRI) is one of the most important methods used by physicians to diagnose bladder prolapse; however, it is highly subjective and largely dependent on the clinical experience of physicians. The application of computer‐aided diagnostic techniques to achieve a graded diagnosis of bladder prolapse can help improve its accuracy and shorten the learning curve. Purpose The purpose of this study is to combine convolutional neural network (CNN) and vision transformer (ViT) for grading bladder prolapse in place of traditional neural networks, and to incorporate attention mechanisms into mobile vision transformer (MobileViT) for assisting in the grading of bladder prolapse. Methods This study focuses on the grading of bladder prolapse in pelvic organs using a combination of a CNN and a ViT. First, this study used MobileNetV2 to extract the local features of the images. Next, a ViT was used to extract the global features by modeling the non‐local dependencies at a distance. Finally, a channel attention module (i.e., squeeze‐and‐excitation network) was used to improve the feature extraction network and enhance its feature representation capability. The final grading of the degree of bladder prolapse was thus achieved. Results Using pelvic MRI images provided by a Huzhou Maternal and Child Health Care Hospital, this study used the proposed method to grade patients with bladder prolapse. The accuracy, Kappa value, sensitivity, specificity, precision, and area under the curve of our method were 86.34%, 78.27%, 83.75%, 95.43%, 85.70%, and 95.05%, respectively. In comparison with other CNN models, the proposed method performed better. Conclusions Thus, the model based on attention mechanisms exhibits better classification performance than existing methods for grading bladder prolapse in pelvic organs, and it can effectively assist physicians in achieving a more accurate bladder prolapse diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助Thien采纳,获得100
1秒前
yang完成签到 ,获得积分10
6秒前
小石榴的爸爸完成签到 ,获得积分10
8秒前
帅气的宽完成签到 ,获得积分10
9秒前
buerzi完成签到,获得积分10
9秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
阿良完成签到 ,获得积分10
13秒前
申燕婷完成签到 ,获得积分10
16秒前
wzk完成签到,获得积分10
17秒前
天天完成签到 ,获得积分10
18秒前
LaixS完成签到,获得积分10
19秒前
qty完成签到 ,获得积分10
21秒前
要笑cc完成签到,获得积分10
21秒前
宣宣宣0733完成签到,获得积分10
23秒前
逍遥子关注了科研通微信公众号
24秒前
胡质斌完成签到,获得积分10
25秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
shhoing应助科研通管家采纳,获得10
27秒前
27秒前
小石榴爸爸完成签到 ,获得积分10
28秒前
shawn完成签到 ,获得积分10
28秒前
mahoon完成签到 ,获得积分10
33秒前
量子星尘发布了新的文献求助10
34秒前
Harlotte完成签到 ,获得积分10
35秒前
历史真相完成签到,获得积分20
38秒前
xh完成签到 ,获得积分10
39秒前
iwsaml发布了新的文献求助10
42秒前
小z完成签到,获得积分10
43秒前
hxpxp完成签到,获得积分10
44秒前
攀攀完成签到 ,获得积分10
47秒前
zozox完成签到 ,获得积分10
51秒前
xh完成签到 ,获得积分10
52秒前
52秒前
elisa828发布了新的文献求助10
52秒前
falling_learning完成签到 ,获得积分10
53秒前
落叶子完成签到 ,获得积分20
53秒前
qiancib202完成签到,获得积分0
54秒前
tao发布了新的文献求助20
1分钟前
Juvenilesy完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5549605
求助须知:如何正确求助?哪些是违规求助? 4634807
关于积分的说明 14635161
捐赠科研通 4576367
什么是DOI,文献DOI怎么找? 2509739
邀请新用户注册赠送积分活动 1485528
关于科研通互助平台的介绍 1456859