University Evaluation through Graduate Employment Prediction: An Influence based Graph Autoencoder Approach

计算机科学 自编码 图形 人工智能 图论 机器学习 理论计算机科学 数据科学 人工神经网络 数学 组合数学
作者
Yuyang Ye,Hengshu Zhu,Tianyi Cui,Runlong Yu,Le Zhang,Hui Xiong
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:36 (11): 7255-7267 被引量:2
标识
DOI:10.1109/tkde.2024.3402234
摘要

It is always challenging task for students to select right universities. For students, graduate job placement is the most important component of university quality. However, existing university evaluation methods predominantly depend on either subjective criteria, such as the perceived quality of the learning environment and academic prestige, or on factors like faculty excellence, which may not provide a precise indication of graduate job placement. Indeed, there is still a lack of a data-driven approach to accurately measure university quality based on the employment situation of graduates. Moreover, the inherently unsupervised nature of university evaluation, compounded by the absence of a reasonable ground truth, necessitates the development of a reliable supervised methodology to precisely quantify university quality. Our basic assumption is that highly influential companies would attract graduates from high-ranking universities. To this end, in this paper, we formulate university evaluation problem into the graduate flow prediction problem, and propose an Influence based Graph Autoencoder (IGAE) method to learn the representation of universities based on the employment of their graduates. Specifically, we first build a talent transition graph based on the massive resume information. This graph reveals the flow of talent between institutions. Then, considering the asymmetric and heterogeneous properties of talent flow, an unidirectional aggregation process with a heterogeneous attention mechanism is designed to encode the nodes in the directed graph and preserve the influence terms at the same time. Afterwards, a novel dual self-attention module is exploited to capture the dynamic pattern of institutions to forecast future employment. Furthermore, we design an influence based decoder to predict the existence of talent flows and estimate the frequency of employment, which can be learnt in a joint learning framework. Finally, we conduct extensive experiments on a real-world dataset for performance evaluation. The experimental results clearly validate the effectiveness of our approach compared to the state-of-the-art baselines, and we provide a case study on university influence analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助粥粥采纳,获得10
1秒前
1秒前
yuC完成签到,获得积分10
2秒前
万能图书馆应助科学家采纳,获得10
2秒前
刻苦听寒完成签到,获得积分10
2秒前
小周小周发布了新的文献求助20
2秒前
2秒前
3秒前
丶氵一生里完成签到,获得积分10
3秒前
ha发布了新的文献求助10
3秒前
moonlight完成签到,获得积分10
3秒前
无尽夏发布了新的文献求助10
3秒前
3秒前
4秒前
garfieldg3完成签到,获得积分10
4秒前
重要小兔子完成签到,获得积分20
4秒前
小嘉贞发布了新的文献求助10
4秒前
4秒前
6秒前
6秒前
7秒前
7秒前
SYLH应助花仙子采纳,获得10
7秒前
FOOL完成签到,获得积分10
8秒前
8秒前
8秒前
含蓄丸子完成签到,获得积分20
8秒前
8秒前
9秒前
chen完成签到,获得积分10
9秒前
chuzhong12发布了新的文献求助20
9秒前
刘卫东关注了科研通微信公众号
9秒前
清脆半双发布了新的文献求助20
10秒前
冷静绿旋发布了新的文献求助10
10秒前
10秒前
hjg发布了新的文献求助10
10秒前
11秒前
liuguohua126发布了新的文献求助10
11秒前
Yolanda完成签到,获得积分10
12秒前
花叶完成签到,获得积分10
12秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785225
求助须知:如何正确求助?哪些是违规求助? 3330781
关于积分的说明 10248184
捐赠科研通 3046175
什么是DOI,文献DOI怎么找? 1671900
邀请新用户注册赠送积分活动 800891
科研通“疑难数据库(出版商)”最低求助积分说明 759868