已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Harnessing cell-free orphan non-coding RNAs as a predictive measure of long-term survival in neoadjuvant breast cancer therapy.

医学 新辅助治疗 乳腺癌 肿瘤科 癌症 内科学
作者
Taylor B. Cavazos,Mehran Karimzadeh,Amir Momen-Roknabadi,Gillian L. Hirst,Lamorna Brown Swigart,Christina Yau,Dang Le Tri Nguyen,Alice Huang,Selina Chen,R. Hanna,Akshaya Krishnan,Anna Hartwig,Jennifer Yen,Irene Acerbi,Fereydoun Hormozdiari,Diane Heditsian,Laura J. Esserman,Laura van ′t Veer,Hani Goodarzi,Babak Alipanahi
出处
期刊:Journal of Clinical Oncology [Lippincott Williams & Wilkins]
卷期号:42 (16_suppl): 585-585
标识
DOI:10.1200/jco.2024.42.16_suppl.585
摘要

585 Background: Pathologic complete response (pCR) is a valuable metric for predicting survival following neoadjuvant therapy (NAT) in breast cancer; however, blood-based biomarkers may refine the prediction of treatment outcomes and inform follow-up treatment decisions. Orphan non-coding RNAs (oncRNAs) are a novel category of small RNAs that are present in tumors and largely absent in healthy tissue. Here, we explore the feasibility of a tumor-naive oncRNA-based liquid biopsy assay for predicting distant recurrence-free survival (DRFS) in breast cancer patients using a standard blood draw. Methods: Our cohort included 538 high-risk breast cancer patients from the multicenter I-SPY2 trial having serum available after NAT and before surgery (timepoint T3). Of the 538 patients (mean age: 48.8 ± 10.3), 191 (36%) achieved pCR. We isolated small RNA from 0.8 mL of patient serum and sequenced it at an average depth of 50 million 100-bp single-end reads. We used our catalog of tumor-derived oncRNAs, discovered in The Cancer Genome Atlas, to develop an AI model for predicting tumor burden based on tumor size. Our AI model was trained on oncRNA profiles from an independent cohort of 719 serum samples collected at diagnosis from individuals with cancer. We assessed tumor burden by oncRNA in the I-SPY2 cohort at T3 and associated this measure with DRFS using robust cutpoints established for each of the two pCR groups: high- ( n=70) and low-burden ( n=468) cutpoints were verified through cross-validation and almost all folds converged on a single value, which we used in our analysis. Results: The continuous oncRNA-derived tumor burden at T3 had a hazards ratio (HR) of 2.4 (95% CI: 1.1–5.1) for predicting DRFS. This measure remained significant in multivariate Cox models that included pCR (HR = 2.7 [1.3–5.6]) or residual cancer burden (RCB II/III versus 0/I; HR = 3.4 [1.6–7.1]). Patients with pCR had a 3-year DRFS of 94%; patients with pCR having low ( n=180) versus high ( n=11) oncRNA burden resulted in 95% and 73% 3-year DRFS, respectively (HR = 7.4 [2.3–24]). Those without pCR had a 3-year DRFS of 78% and stratification by oncRNA burden resulted in 85% and 71% 3-year DRFS for the low ( n=288) and high ( n=59) burden groups, respectively (HR=2.4 [1.5–3.9]). Importantly, we saw no restricted mean survival time difference (RMST) at 3 years between those with and without pCR among the high oncRNA burden group (0.1-month difference, p=0.97). Conclusions: We demonstrate the utility of a tumor-naive, oncRNA-derived tumor burden AI model as a predictive measure of treatment outcome and as a prognostic biomarker that can be used in addition to pCR to further stratify patients as low or high risk of recurrence. Integration of our oncRNA assay with existing biomarkers and clinicopathologic variables, has the potential to add value for predicting outcomes and prioritizing patients that would benefit from additional care.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈旧完成签到,获得积分10
1秒前
Thanatos完成签到,获得积分10
1秒前
yuqinghui98完成签到 ,获得积分10
1秒前
爱吃猫的鱼完成签到,获得积分10
1秒前
追寻哲瀚完成签到 ,获得积分10
2秒前
xiao完成签到 ,获得积分10
2秒前
super完成签到,获得积分10
3秒前
asaki完成签到,获得积分10
4秒前
小瓜完成签到 ,获得积分10
4秒前
Lyl完成签到 ,获得积分10
4秒前
满眼星辰发布了新的文献求助10
4秒前
aishiying完成签到,获得积分10
4秒前
RRRZZ完成签到 ,获得积分10
4秒前
耶格尔完成签到 ,获得积分10
5秒前
WangWaud完成签到,获得积分10
5秒前
布可完成签到,获得积分10
5秒前
姆姆没买完成签到 ,获得积分10
5秒前
研友_ngKdbn发布了新的文献求助10
5秒前
吴一一完成签到,获得积分10
5秒前
糖醋里脊加醋完成签到 ,获得积分10
6秒前
m李完成签到 ,获得积分10
6秒前
阿俊完成签到 ,获得积分10
6秒前
6秒前
xifanfan完成签到 ,获得积分10
6秒前
你喜欢什么样子的我演给你看完成签到 ,获得积分10
7秒前
科研通AI5应助he采纳,获得10
7秒前
迷路的台灯完成签到 ,获得积分10
8秒前
Chaos完成签到 ,获得积分10
8秒前
孙文杰完成签到 ,获得积分10
9秒前
不再挨训完成签到 ,获得积分10
9秒前
liuying2发布了新的文献求助10
9秒前
3080完成签到 ,获得积分10
10秒前
小蘑菇应助文献杀手采纳,获得10
11秒前
SS完成签到,获得积分0
11秒前
嘟嘟嘟嘟完成签到 ,获得积分10
11秒前
zsl完成签到 ,获得积分10
13秒前
Mark完成签到 ,获得积分10
13秒前
悦耳的芷珊完成签到,获得积分10
13秒前
snah完成签到 ,获得积分10
14秒前
opticsLM完成签到,获得积分10
14秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840608
求助须知:如何正确求助?哪些是违规求助? 3382636
关于积分的说明 10525610
捐赠科研通 3102399
什么是DOI,文献DOI怎么找? 1708788
邀请新用户注册赠送积分活动 822685
科研通“疑难数据库(出版商)”最低求助积分说明 773472

今日热心研友

注:热心度 = 本日应助数 + 本日被采纳获取积分÷10