A Comparison of Denoising Approaches for Spoken Word Production Related Artefacts in Continuous Multiband fMRI Data

降噪 语音识别 计算机科学 生产(经济) 词(群论) 人工智能 自然语言处理 心理学 语言学 哲学 宏观经济学 经济
作者
Angélique Volfart,Katie L. McMahon,Greig I. de Zubicaray
出处
期刊:Neurobiology of language [MIT Press]
卷期号:5 (4): 901-921
标识
DOI:10.1162/nol_a_00151
摘要

It is well-established from fMRI experiments employing gradient echo echo-planar imaging (EPI) sequences that overt speech production introduces signal artefacts compromising accurate detection of task-related responses. Both design and post-processing (denoising) techniques have been proposed and implemented over the years to mitigate the various noise sources. Recently, fMRI studies of speech production have begun to adopt multiband EPI sequences that offer better signal-to-noise ratio (SNR) and temporal resolution allowing adequate sampling of physiological noise sources (e.g., respiration, cardiovascular effects) and reduced scanner acoustic noise. However, these new sequences may also introduce additional noise sources. In this study, we demonstrate the impact of applying several noise-estimation and removal approaches to continuous multiband fMRI data acquired during a naming-to-definition task, including rigid body motion regression and outlier censoring, principal component analysis for removal of cerebrospinal fluid (CSF)/edge-related noise components, and global fMRI signal regression (using two different approaches) compared to a baseline of realignment and unwarping alone. Our results show the strongest and most spatially extensive sources of physiological noise are the global signal fluctuations arising from respiration and muscle action and CSF/edge-related noise components, with residual rigid body motion contributing relatively little variance. Interestingly, denoising approaches tended to reduce and enhance task-related BOLD signal increases and decreases, respectively. Global signal regression using a voxel-wise linear model of the global signal estimated from unmasked data resulted in dramatic improvements in temporal SNR. Overall, these findings show the benefits of combining continuous multiband EPI sequences and denoising approaches to investigate the neurobiology of speech production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
feb完成签到,获得积分10
3秒前
66发布了新的文献求助10
3秒前
萨芬撒发布了新的文献求助10
4秒前
葶苈子完成签到 ,获得积分10
6秒前
李健应助简单刺猬采纳,获得10
8秒前
GreenDuane完成签到 ,获得积分0
11秒前
纤尘cc关注了科研通微信公众号
11秒前
美丽的凌蝶完成签到,获得积分10
15秒前
Behappy完成签到 ,获得积分10
17秒前
66完成签到,获得积分20
17秒前
北落完成签到 ,获得积分10
19秒前
20秒前
丘比特应助haoooooooooooooo采纳,获得10
21秒前
纤尘cc发布了新的文献求助10
25秒前
一日不看书智商输给猪完成签到,获得积分10
27秒前
27秒前
简单刺猬发布了新的文献求助10
33秒前
aha应助林莹采纳,获得30
35秒前
fwl完成签到 ,获得积分10
37秒前
38秒前
43秒前
科研通AI5应助Han采纳,获得10
44秒前
Cherry发布了新的文献求助10
46秒前
路痴完成签到,获得积分10
49秒前
52秒前
笑笑完成签到,获得积分20
54秒前
55秒前
56秒前
笑笑发布了新的文献求助10
57秒前
1分钟前
imomoe完成签到,获得积分10
1分钟前
1分钟前
1分钟前
乐乐应助greatsnow采纳,获得10
1分钟前
asdf发布了新的文献求助10
1分钟前
1分钟前
内向绿竹发布了新的文献求助10
1分钟前
1分钟前
1分钟前
吴可之发布了新的文献求助10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778595
求助须知:如何正确求助?哪些是违规求助? 3324214
关于积分的说明 10217445
捐赠科研通 3039397
什么是DOI,文献DOI怎么找? 1668060
邀请新用户注册赠送积分活动 798494
科研通“疑难数据库(出版商)”最低求助积分说明 758385