Self-attention in Knowledge Tracing: Why It Works

追踪 计算机科学 基线(sea) 背景(考古学) 人工智能 程序设计语言 古生物学 海洋学 生物 地质学
作者
Shi Pu,Lee B. Becker
出处
期刊:Lecture Notes in Computer Science 卷期号:: 731-736 被引量:2
标识
DOI:10.1007/978-3-031-11644-5_75
摘要

Knowledge tracing refers to the dynamic assessment of a learner's mastery of skills. There has been widespread adoption of the self-attention mechanism in knowledge-tracing models in recent years. These models consistently report performance gains over baseline knowledge tracing models in public datasets. However, why the self-attention mechanism works in knowledge tracing is unknown. This study argues that the ability to encode when a learner attempts to answer the same item multiple times in a row (henceforth referred to as repeated attempts) is a significant reason why self-attention models perform better than other deep knowledge tracing models. We present two experiments to support our argument. We use context-aware knowledge tracing (AKT) as our example self-attention model and dynamic key-value memory networks (DKVMN) and deep performance factors analysis (DPFA) as our baseline models. Firstly, we show that removing repeated attempts from datasets closes the performance gap between the AKT and the baseline models. Secondly, we present DPFA+, an extension of DPFA that is able to consume manually crafted repeated attempts features. We demonstrate that DPFA+ performs better than AKT across all datasets with manually crafted repeated attempts features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
zhanyuji发布了新的文献求助10
3秒前
知昂张发布了新的文献求助10
4秒前
4秒前
王根基完成签到,获得积分10
4秒前
喜羊羊完成签到,获得积分20
4秒前
LL发布了新的文献求助10
5秒前
5秒前
不够萌发布了新的文献求助20
7秒前
小二郎应助兴奋柜子采纳,获得10
8秒前
我是老大应助Alex采纳,获得200
8秒前
毕业顺利发布了新的文献求助10
9秒前
田様应助himan采纳,获得10
10秒前
爆米花应助yumiao采纳,获得10
11秒前
香蕉觅云应助川川采纳,获得10
11秒前
Markie发布了新的文献求助10
11秒前
wuxufang发布了新的文献求助50
12秒前
14秒前
14秒前
15秒前
16秒前
皮水之完成签到,获得积分10
17秒前
科研通AI5应助zhanyuji采纳,获得10
18秒前
玉米发布了新的文献求助10
18秒前
正在加载发布了新的文献求助10
19秒前
安晗默发布了新的文献求助10
20秒前
不够萌完成签到,获得积分10
20秒前
20秒前
皮水之发布了新的文献求助10
21秒前
21秒前
KIM完成签到,获得积分10
21秒前
传奇3应助兴奋柜子采纳,获得10
23秒前
23秒前
喜羊羊关注了科研通微信公众号
24秒前
鹏鱼燕完成签到,获得积分10
25秒前
Lance先生完成签到,获得积分10
25秒前
wuuu_ruby发布了新的文献求助20
25秒前
25秒前
一一发布了新的文献求助10
26秒前
打打应助羊驼采纳,获得10
27秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795205
求助须知:如何正确求助?哪些是违规求助? 3340212
关于积分的说明 10299164
捐赠科研通 3056777
什么是DOI,文献DOI怎么找? 1677185
邀请新用户注册赠送积分活动 805246
科研通“疑难数据库(出版商)”最低求助积分说明 762409