析氧
过电位
双功能
分解水
催化作用
材料科学
电解水
多金属氧酸盐
制氢
碳纳米管
化学工程
法拉第效率
电解
无机化学
电催化剂
氢
钒
纳米技术
双功能催化剂
碳纤维
可逆氢电极
作者
Eugenia P. Quirós‐Díez,Melanie Guillen-Soler,Carlos Herreros-Lucas,Alejandro López‐Moreno,José Manuel Vila‐Fungueiriño,Antonio Luis Llamas Saiz,Karol Strutyński,Manuel Melle-Franco,María del Carmen Giménez López,Eugenia P. Quirós‐Díez,Melanie Guillen-Soler,Carlos Herreros-Lucas,Alejandro López‐Moreno,José Manuel Vila‐Fungueiriño,Antonio Luis Llamas Saiz,Karol Strutyński,Manuel Melle-Franco,María del Carmen Giménez López
标识
DOI:10.1002/adma.202512902
摘要
Abstract Development of efficient and stable bifunctional electrocatalysts for water electrolysis under acidic conditions is essential for sustainable hydrogen production. A novel vanadium polyoxometalate (POM)‐based material, Na 4 (H 2 O) 12 [(CH 2 OH) 3 CNH 3 ] 2 [V 10 O 28 ]·4H 2 O (1) is presented, incorporating non‐innocent cations and whose electrocatalytic activity can be switched from the production of oxygen to hydrogen through its assembly on carbon nanotubes (CNT). A physical mixture (1/CNT) shows remarkable oxygen evolution reaction (OER) activity, with an overpotential of 0.34 V at 10 mA cm − 2 , outperforming commercial IrO 2 (0.45 V) and approaching Ir/C (0.31 V), with 80% Faradaic efficiency. In contrast, directed assembly (1@CNT) unlocks TRIS ⁺= [(CH 2 OH) 3 CNH 3 ]⁺ groups functionality, enabling high hydrogen evolution reaction (HER) efficiency, with an onset potential of −0.07 V, close to Pt/C, and 94% Faradaic efficiency. Mechanistic studies, strongly supported by in‐operando confocal microscopy and theoretical calculations, reveal that the modulation of crystal interactions and the local microenvironment is key to orchestrating the OER/HER tuning. OER is proposed to proceed via an alcohol oxidation reaction (AOR), while HER benefits from TRIS⁺ moieties acting as a “proton sponge”. This work provides a compelling approach for rational design of bifunctional molecular electrocatalysts based on earth‐abundant elements and controlled nanoassembly, with clear relevance for advancing green hydrogen production technologies.
科研通智能强力驱动
Strongly Powered by AbleSci AI