CAVVA: Computational Affective Video-in-Video Advertising

在线广告 计算机科学 上下文广告 广告 货币化 集合(抽象数据类型) 展示广告 在线视频 广告研究 互联网 多媒体 万维网 宏观经济学 业务 经济 程序设计语言
作者
Karthik Yadati,Harish Katti,Mohan Kankanhalli
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:16 (1): 15-23 被引量:86
标识
DOI:10.1109/tmm.2013.2282128
摘要

Advertising is ubiquitous in the online community and more so in the ever-growing and popular online video delivery websites (e.g., YouTube). Video advertising is becoming increasingly popular on these websites. In addition to the existing pre-roll/post-roll advertising and contextual advertising, this paper proposes an in-stream video advertising strategy-Computational Affective Video-in-Video Advertising (CAVVA). Humans being emotional creatures are driven by emotions as well as rational thought. We believe that emotions play a major role in influencing the buying behavior of users and hence propose a video advertising strategy which takes into account the emotional impact of the videos as well as advertisements. Given a video and a set of advertisements, we identify candidate advertisement insertion points (step 1) and also identify the suitable advertisements (step 2) according to theories from marketing and consumer psychology. We formulate this two part problem as a single optimization function in a non-linear 0-1 integer programming framework and provide a genetic algorithm based solution. We evaluate CAVVA using a subjective user-study and eye-tracking experiment. Through these experiments, we demonstrate that CAVVA achieves a good balance between the following seemingly conflicting goals of (a) minimizing the user disturbance because of advertisement insertion while (b) enhancing the user engagement with the advertising content. We compare our method with existing advertising strategies and show that CAVVA can enhance the user's experience and also help increase the monetization potential of the advertising content.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
badadaa完成签到 ,获得积分10
1秒前
Marlo发布了新的文献求助10
1秒前
wanci应助一语道破采纳,获得10
2秒前
Mxaxxxx发布了新的文献求助10
4秒前
5秒前
善学以致用应助小蓝采纳,获得10
5秒前
5秒前
5秒前
6秒前
7秒前
7秒前
冯前浪发布了新的文献求助10
9秒前
王月缶完成签到,获得积分10
9秒前
believe发布了新的文献求助20
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
传奇3应助hei采纳,获得30
10秒前
11秒前
王月缶发布了新的文献求助10
12秒前
20发布了新的文献求助10
12秒前
14秒前
标致的夏天完成签到 ,获得积分10
14秒前
浮游应助随想采纳,获得10
15秒前
orixero应助dxm采纳,获得10
15秒前
Ava应助遍地捡糖不要钱采纳,获得10
15秒前
Akim应助扶休采纳,获得50
15秒前
小蓝发布了新的文献求助10
15秒前
小殷发布了新的文献求助10
16秒前
动听的晓博完成签到,获得积分10
16秒前
16秒前
16秒前
CipherSage应助Mxaxxxx采纳,获得10
17秒前
17秒前
18秒前
冯俊驰完成签到,获得积分20
19秒前
19秒前
慕青应助真实的德天采纳,获得10
20秒前
单薄二娘发布了新的文献求助10
20秒前
believe完成签到,获得积分20
20秒前
myq发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950785
求助须知:如何正确求助?哪些是违规求助? 4213480
关于积分的说明 13104665
捐赠科研通 3995409
什么是DOI,文献DOI怎么找? 2186899
邀请新用户注册赠送积分活动 1202125
关于科研通互助平台的介绍 1115408