亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

First Report of Fusarium pseudograminearum Causing Crown Rot of Wheat in Henan, China

生物 马铃薯葡萄糖琼脂 分生孢子 镰刀菌 菌丝体 牙冠(牙科) 园艺 植物 琼脂 遗传学 医学 牙科 细菌
作者
Honglian Li,Huilan Yuan,Bo Fu,Xiaoping Xing,Bingjian Sun,Wei Tang
出处
期刊:Plant Disease [Scientific Societies]
卷期号:96 (7): 1065-1065 被引量:110
标识
DOI:10.1094/pdis-01-12-0007-pdn
摘要

Fusarium pseudograminearum (O'Donnell & Aoki), a residue-borne pathogen, is responsible for crown rot of wheat (Triticum aestivum L.). Since its first detection in Queensland, Australia in 1951, it has been reported in many other countries, but not China (2). In May 2011, a crown rot disease was observed in wheat cv. Aikang 58 in a wheat-maize rotation, irrigable and loam field in Henan Province, China. Diseased wheat plants showed honey brown discoloration in the stem bases and whitehead in some plants, which are symptoms of crown rot with about 70% incidence in a surveyed field (2). The pathogen was isolated from diseased stem base on potato dextrose agar (PDA) after being surface-disinfested with 5% NaClO solution for 2 min. Pure cultures were established on carnation leaf agar (CLA) through a single spore technique and identified by morphological and molecular methods according to protocols described previously (1,3,4). Macroconidia of F. pseudograminearum were formed in abundant sporodochia on CLA cultures grown under the BLB light. Macroconidia were usually five septate (about three to seven) and 27 to 91 × 2.7 to 5.5 μm. Colonies grown on PDA from a single conidium in the dark at 25°C had average radial growth rates of ~4.7 to 9.9 mm per day. Colony pigment on PDA grown under light varied from rose to burgundy, while mycelium ranged from rose to yellow white. Two isolates (WZ-8A and WZ-2B) were selected for molecular identification. The translation elongation factor 1-α gene and rDNA ITS gene were amplified by PCR using the specific primers described previously (4). PCR products were sequenced (GenBank Accession Nos. JN862232 to JN862235). Phylogenic analysis of the sequence indicated that the isolates were identified as F. pseudograminearum. The identification was further confirmed by the F. pseudograminearum species-specific PCR primers (Fp1-1: CGGGGTAGTTTCACATTTCCG and Fp1-2: GAGAATGTGATGACGACAATA) (1). The expected PCR products of 520 bp were produced only in F. pseudograminearum. Isolates WZ-2B and WZ-8A were deposited in the Agriculture Culture Collection of China as ACCC38067 and ACCC 38068, respectively. Pathogenicity tests were conducted by inoculating winter wheat cultivar Wenmai 19 with isolates WZ-8A and WZ-2B through soil inoculation. Inoculum was prepared by growing cultures on sterilized wheat bran and chopped wheat-straw (4:1, v/v) after incubation at 25°C for 2 weeks. This inoculum was added to sterilized soil at 1% by volume and no inoculum was added in control treatment. Five seeds were planted in a 15 cm wide pot in a 20 to 25°C greenhouse, with six replications. Seedling death and crown browning occurred in the inoculated wheat plants after 4 weeks with over 90% incidence, while no symptoms developed in the control plants. The fungus was reisolated from inoculated plants, fulfilling Koch's postulates. To our knowledge, this is the first report of F. pseudograminearum causing crown rot of wheat in China. Considering Henan is the largest wheat production province in China with over 5 million hectares planting area, and the soil and climate conditions are suitable for this disease, it will be a important pathogen of wheat in Henan in the future. References: (1) T. Aoki et al. Mycologia 91:597, 1999. (2) L. W. Burgess. Page 271 in: Crown Rot of Wheat: Fusarium. B. A. Summerell et al., eds. APS Press, St. Paul, MN, 2001. (3) R. G. Francis et al. Trans. Brit. Mycol. Soc. 68:421, 1977. (4) J. B. Scott et al. Mycol. Res. 110:1413, 2006.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
9秒前
10秒前
Darcy发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
18秒前
26秒前
大个应助九司采纳,获得10
30秒前
研友_R2D2发布了新的文献求助10
43秒前
44秒前
46秒前
55秒前
九司发布了新的文献求助10
1分钟前
1分钟前
研友_R2D2发布了新的文献求助30
1分钟前
1分钟前
1分钟前
Dietetykza5zl发布了新的文献求助20
1分钟前
2分钟前
2分钟前
Orange应助科研通管家采纳,获得10
2分钟前
Dietetykza5zl完成签到,获得积分10
2分钟前
zss完成签到,获得积分20
3分钟前
3分钟前
3分钟前
zss发布了新的文献求助20
3分钟前
SciGPT应助zss采纳,获得30
3分钟前
3分钟前
whj完成签到 ,获得积分10
3分钟前
3分钟前
可怜的课题组补助完成签到,获得积分20
3分钟前
3分钟前
浮游应助科研通管家采纳,获得10
4分钟前
大个应助科研通管家采纳,获得10
4分钟前
4分钟前
Benhnhk21完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482463
求助须知:如何正确求助?哪些是违规求助? 4583243
关于积分的说明 14389081
捐赠科研通 4512329
什么是DOI,文献DOI怎么找? 2472860
邀请新用户注册赠送积分活动 1459082
关于科研通互助平台的介绍 1432553